私はhereを得たので、ブートストラップを使ってカーブフィットのスパゲッティプロットを得ることができました。私はこれらの適合モデルから信頼バンドを導出しようとしています。私はgeom_ribbonは()に行くための良い方法だろう、おそらく思っggplotはブートストラップカーブフィッティングから信頼区間を表示する
library(dplyr)
library(broom)
library(ggplot2)
xdata <- c(-35.98, -34.74, -33.46, -32.04, -30.86, -29.64, -28.50, -27.29, -26.00,
-24.77, -23.57, -22.21, -21.19, -20.16, -18.77, -17.57, -16.47, -15.35,
-14.40, -13.09, -11.90, -10.47, -9.95,-8.90,-7.77,-6.80, -5.99,
-5.17, -4.21, -3.06, -2.29, -1.04)
ydata <- c(-4.425, -4.134, -5.145, -5.411, -6.711, -7.725, -8.087, -9.059, -10.657,
-11.734, NA, -12.803, -12.906, -12.460, -12.128, -11.667, -10.947, -10.294,
-9.185, -8.620, -8.025, -7.493, -6.713, -6.503, -6.316, -5.662, -5.734, -4.984,
-4.723, -4.753, -4.503, -4.200)
data <- data.frame(xdata,ydata)
x_range <- seq(min(xdata), max(xdata), length.out = 1000)
fitted_boot <- data %>%
bootstrap(100) %>%
do({
m <- nls(ydata ~ A*cos(2*pi*((xdata-x_0)/z))+M, ., start=list(A=4,M=-7,x_0=-10,z=30))
f <- predict(m, newdata = list(xdata = x_range))
data.frame(xdata = x_range, .fitted = f)
})
ggplot(data, aes(xdata, ydata)) +
geom_line(aes(y=.fitted, group=replicate), fitted_boot, alpha=.1, color="blue") +
geom_point(size=3) +
theme_bw()
が、私:私は運以下で動作するように
quants <- apply(fitted_boot, 1, quantile, c(0.025, 0.5, 0.975))
のようなものを得ることがなかったしましたここからどこに行くのか分かりません。
他の投稿を手伝ってくれてありがとうAxemanに感謝します!