2016-12-03 14 views
-1

インターネット上で次のコードが見つかりました。私は型変換に問題があると思います。
私はそれのいくつかを解決しようとしましたが、それでも私を逃れることはほとんどありません。K-はJavaを使ったクラスタリングを意味します

import java.util.ArrayList; 
import java.util.List; 
import java.util.Random; 

public class Cluster { 

    public List points; 
    public Point centroid; 
    public int id; 

    //Creates a new Cluster 
    public Cluster(int id) { 
     this.id = id; 
     this.points = new ArrayList(); 
     this.centroid = null; 
    } 

    public List getPoints() { 
     return points; 
    } 

    public void addPoint(Point point) { 
     points.add(point); 
    } 

    public void setPoints(List points) { 
     this.points = points; 
    } 

    public Point getCentroid() { 
     return centroid; 
    } 

    public void setCentroid(Point centroid) { 
     this.centroid = centroid; 
    } 

    public int getId() { 
     return id; 
    } 

    public void clear() { 
     points.clear(); 
    } 

    public void plotCluster() { 
     System.out.println("[Cluster: " + id+"]"); 
     System.out.println("[Centroid: " + centroid + "]"); 
     System.out.println("[Points: \n"); 
     for(Point p : points) { 
      System.out.println(p); 
     } 
     System.out.println("]"); 
    } 

} 

public class Point { 

    private double x = 0; 
    private double y = 0; 
    private int cluster_number = 0; 

    public Point(double x, double y) 
    { 
     this.setX(x); 
     this.setY(y); 
    } 

    public void setX(double x) { 
     this.x = x; 
    } 

    public double getX() { 
     return this.x; 
    } 

    public void setY(double y) { 
     this.y = y; 
    } 

    public double getY() { 
     return this.y; 
    } 

    public void setCluster(int n) { 
     this.cluster_number = n; 
    } 

    public int getCluster() { 
     return this.cluster_number; 
    } 

    //Calculates the distance between two points. 
    protected static double distance(Point p, Point centroid) { 
     return Math.sqrt(Math.pow((centroid.getY() - p.getY()), 2) + Math.pow((centroid.getX() - p.getX()), 2)); 
    } 

    //Creates random point 
    protected static Point createRandomPoint(int min, int max) { 
     Random r = new Random(); 
     double x = min + (max - min) * r.nextDouble(); 
     double y = min + (max - min) * r.nextDouble(); 
     return new Point(x,y); 
    } 

    protected static List createRandomPoints(int min, int max, int number) { 
     List points = new ArrayList(number); 
     for(int i = 0; i < number; i++) { 
      points.add(createRandomPoint(min,max)); 
     } 
     return points; 
    } 

    public String toString() { 
     return "("+x+","+y+")"; 
    } 
} 
public class KMeans { 

    //Number of Clusters. This metric should be related to the number of points 
    private int NUM_CLUSTERS = 3;  
    //Number of Points 
    private int NUM_POINTS = 15; 
    //Min and Max X and Y 
    private static final int MIN_COORDINATE = 0; 
    private static final int MAX_COORDINATE = 10; 

    private List points; 
    private List clusters; 

    public KMeans() { 
     this.points = new ArrayList(); 
     this.clusters = new ArrayList();   
    } 

    public static void main(String[] args) { 

     KMeans kmeans = new KMeans(); 
     kmeans.init(); 
     kmeans.calculate(); 
    } 

    //Initializes the process 
    public void init() { 
     //Create Points 
     points = Point.createRandomPoints(MIN_COORDINATE,MAX_COORDINATE,NUM_POINTS); 

     //Create Clusters 
     //Set Random Centroids 
     for (int i = 0; i < NUM_CLUSTERS; i++) { 
      Cluster cluster = new Cluster(i); 
      Point centroid = Point.createRandomPoint(MIN_COORDINATE,MAX_COORDINATE); 
      cluster.setCentroid(centroid); 
      clusters.add(cluster); 
     } 

     //Print Initial state 
     plotClusters(); 
    } 

    private void plotClusters() { 
     for (int i = 0; i < NUM_CLUSTERS; i++) { 
      Cluster c = clusters.get(i); 
      c.plotCluster(); 
     } 
    } 

    //The process to calculate the K Means, with iterating method. 
    public void calculate() { 
     boolean finish = false; 
     int iteration = 0; 

     // Add in new data, one at a time, recalculating centroids with each new one. 
     while(!finish) { 
      //Clear cluster state 
      clearClusters(); 

      List lastCentroids = getCentroids(); 

      //Assign points to the closer cluster 
      assignCluster(); 

      //Calculate new centroids. 
      calculateCentroids(); 

      iteration++; 

      List currentCentroids = getCentroids(); 

      //Calculates total distance between new and old Centroids 
      double distance = 0; 
      for(int i = 0; i < lastCentroids.size(); i++) { 
       distance += Point.distance(lastCentroids.get(i),currentCentroids.get(i)); 
      } 
      System.out.println("#################"); 
      System.out.println("Iteration: " + iteration); 
      System.out.println("Centroid distances: " + distance); 
      plotClusters(); 

      if(distance == 0) { 
       finish = true; 
      } 
     } 
    } 

    private void clearClusters() { 
     for(Cluster cluster : clusters) { 
      cluster.clear(); 
     } 
    } 

    private List getCentroids() { 
     List centroids = new ArrayList(NUM_CLUSTERS); 
     for(Cluster cluster : clusters) { 
      Point aux = cluster.getCentroid(); 
      Point point = new Point(aux.getX(),aux.getY()); 
      centroids.add(point); 
     } 
     return centroids; 
    } 

    private void assignCluster() { 
     double max = Double.MAX_VALUE; 
     double min = max; 
     int cluster = 0;     
     double distance = 0.0; 

     for(Point point : points) { 
      min = max; 
      for(int i = 0; i < NUM_CLUSTERS; i++) { 
       Cluster c = clusters.get(i); 
       distance = Point.distance(point, c.getCentroid()); 
       if(distance < min){ 
        min = distance; 
        cluster = i; 
       } 
      } 
      point.setCluster(cluster); 
      clusters.get(cluster).addPoint(point); 
     } 
    } 

    private void calculateCentroids() { 
     for(Cluster cluster : clusters) { 
      double sumX = 0; 
      double sumY = 0; 
      List list = cluster.getPoints(); 
      int n_points = list.size(); 

      for(Point point : list) { 
       sumX += point.getX(); 
       sumY += point.getY(); 
      } 

      Point centroid = cluster.getCentroid(); 
      if(n_points > 0) { 
       double newX = sumX/n_points; 
       double newY = sumY/n_points; 
       centroid.setX(newX); 
       centroid.setY(newY); 
      } 
     } 
    } 
} 

私は次のようなエラーがあります。それらを解決する方法:

java:45: warning: [unchecked] unchecked call to add(E) as a member of the raw type List 
      clusters.add(cluster); 
         ^
    where E is a type-variable: 
    E extends Object declared in interface List 
/tmp/java_kmNqUn/KMeans.java:54: error: incompatible types: Object cannot be converted to Cluster 
      Cluster c = clusters.get(i); 
            ^
/tmp/java_kmNqUn/KMeans.java:84: error: incompatible types: Object cannot be converted to Point 
       distance += Point.distance(lastCentroids.get(i),currentCentroids.get(i)); 
                  ^
/tmp/java_kmNqUn/KMeans.java:98: error: incompatible types: Object cannot be converted to Cluster 
     for(Cluster cluster : clusters) { 
          ^
/tmp/java_kmNqUn/KMeans.java:105: error: incompatible types: Object cannot be converted to Cluster 
     for(Cluster cluster : clusters) { 
          ^
/tmp/java_kmNqUn/KMeans.java:108: warning: [unchecked] unchecked call to add(E) as a member of the raw type List 
      centroids.add(point); 
         ^
    where E is a type-variable: 
    E extends Object declared in interface List 
/tmp/java_kmNqUn/KMeans.java:119: error: incompatible types: Object cannot be converted to Point 
     for(Point point : points) { 
         ^
/tmp/java_kmNqUn/KMeans.java:122: error: incompatible types: Object cannot be converted to Cluster 
       Cluster c = clusters.get(i); 
             ^
/tmp/java_kmNqUn/KMeans.java:130: error: cannot find symbol 
      clusters.get(cluster).addPoint(point); 
           ^
    symbol: method addPoint(Point) 
    location: class Object 
/tmp/java_kmNqUn/KMeans.java:135: error: incompatible types: Object cannot be converted to Cluster 
     for(Cluster cluster : clusters) { 
          ^
/tmp/java_kmNqUn/KMeans.java:141: error: incompatible types: Object cannot be converted to Point 
      for(Point point : list) { 
          ^
/tmp/java_kmNqUn/Point.java:61: warning: [unchecked] unchecked call to add(E) as a member of the raw type List 
      points.add(createRandomPoint(min,max)); 
        ^
    where E is a type-variable: 
    E extends Object declared in interface List 
/tmp/java_kmNqUn/Cluster.java:27: warning: [unchecked] unchecked call to add(E) as a member of the raw type List 
     points.add(point); 
       ^
    where E is a type-variable: 
    E extends Object declared in interface List 
/tmp/java_kmNqUn/Cluster.java:54: error: incompatible types: Object cannot be converted to Point 
     for(Point p : points) { 
        ^
Note: Some messages have been simplified; recompile with -Xdiags:verbose to get full output 
10 errors 
4 warnings* 

あなたは任意の型パラメータなしタイプListを使用しないでください...

答えて

2

を私を導いてください。代わりにList<SomeType>を使用してください(SomeTypeを関連するタイプに置き換えてください)。

0

タイプパラメータを持つ強く型付けされたジェネリックListを使用するのが最良の方法です。しかし、ジェネリックをサポートしていない旧バージョンのJavaを使用することを余儀なくされた場合は、次のようにクラスタオブジェクトをキャストできます。Cluster c = (Cluster)clusters.get(i);

関連する問題