私は多重帰属データ(Ameliaで作成)にマルチレベルモデルを実行しようとしています。R(Amelia、zelig、lme4)の多重帰属データセットのマルチレベル回帰モデル
Error in object[[1]]$result$call :
$ operator not defined for this S4 class
私はOLS回帰を実行する場合、それは動作します:
サンプルは、このコードは、次のエラーコードを生成グループとクラスタ化されたサンプル= 24に基づいて、N = 150library("ZeligMultilevel")
ML.model.0 <- zelig(dv~1 + tag(1|group), model="ls.mixed",
data=a.out$imputations)
summary(ML.model.0)
されます
model.0 <- zelig(dv~1, model="ls", data=a.out$imputations)
m.0 <- coef(summary(model.0))
print(m.0, digits = 2)
Value Std. Error t-stat p-value
[1,] 45 0.34 130 2.6e-285
の作業例を提供しています。
require(Zelig)
require(Amelia)
require(ZeligMultilevel)
data(freetrade)
length(freetrade$country) #grouping variable
#Imputation of missing data
a.out <- amelia(freetrade, m=5, ts="year", cs="country")
# Models: (1) OLS; (2) multi-level
model.0 <- zelig(polity~1, model="ls", data=a.out$imputations)
m.0 <- coef(summary(model.0))
print(m.0, digits = 2)
ML.model.0 <- zelig(polity~1 + tag(1|country), model="ls.mixed", data=a.out$imputations)
summary(ML.model.0)
私の問題は、ZeligがAmeliaのmiクラスとどのようにインターフェイスするかで問題になると思います。したがって、私は別のRパッケージ、lme4に目を向ける。
require(lme4)
write.amelia(obj=a.out, file.stem="inmi", format="csv", na="NA")
diff <-list(5) # a list to store each model, 5 is the number of the imputed datasets
for (i in 1:5) {
file.name <- paste("inmi", 5 ,".csv",sep="")
data.to.use <- read.csv(file.name)
diff[[5]] <- lmer(polity ~ 1 + (1 | country),
data = data.to.use)}
diff
結果は以下の通りです:私はdiff[[4]]
でdiff[[5]]
を交換する際に
[[1]]
[1] 5
[[2]]
NULL
[[3]]
NULL
[[4]]
NULL
[[5]]
Linear mixed model fit by REML
Formula: polity ~ 1 + (1 | country)
Data: data.to.use
AIC BIC logLik deviance REMLdev
1006 1015 -499.9 1002 999.9
Random effects:
Groups Name Variance Std.Dev.
country (Intercept) 14.609 3.8222
Residual 17.839 4.2236
Number of obs: 171, groups: country, 9
Fixed effects:
Estimate Std. Error t value
(Intercept) 2.878 1.314 2.19
結果は同じまま、diff[[3]]
などそれでも、私は、これは実際に組み合わせたデータセットの結果であるかどうかを疑問に思ってまたは1つの帰属データセットに対して実行されます。何かご意見は?ありがとう!
ケアは、私たちがいじることができ作業例を提供するには? –
ローマに感謝します。私は実例を提供しました。エラーを修正する方法を知っていますか?それは素晴らしいだろう! – TiF
要約メソッドにバグが存在する必要があります。それが助けになると、個々の代入の係数に個別にアクセスできます(たとえば、coef(ML.model.0 $ imp1 $ result))。 –