私はこのようなユーティリティを構築しようとしていますが、http://labs.ideeinc.com/multicolr、 はどのアルゴリズムを使用しているのか分かりません。視覚的類似性検索アルゴリズム
答えて
ヒストグラムをマッチさせるだけです。
画像のヒストグラムを作成します。ヒストグラムを画像のサイズで正規化する。 A ヒストグラムは、色と同数の要素を持つベクトルです。あなたは32,24、および16ビットの精度さえも必要とせず、これはあなたを遅らせるだけです。パフォーマンス上の理由から、ヒストグラムを4,8、および10〜12ビットにマップします。
- すべての4ビットヒストグラムとサンプルカラーの間にファジィ
least distance compare
を実行します。 - 次に、そのセットを取り、8ビットのヒストグラムを比較します。
- 次に、残りのセットと比較して、10ビットまたは12ビットのヒストグラムになることがあります。小さな集合を見つけるために、合計集合と非常に少数の計算を比較しているので、これは最高のパフォーマンス検索になります。
- その後、あなたは、計算数の多い小さなサブセット上で動作する、など
本当の大トリックは、同様のヒストグラムをマッチングするための最良のアルゴリズムを見つけることです。
距離計算から始めます。 3次元では、私はそれがあったと思う:
SQRT((X1-X2)^ 2 +(Y1-Y2)^ 2 +(Z1-Z2)^ 2)私はこれをやっている
をメモリからは、確認してください。
あなたの目的に合わせて3つ以上のディメンションが用意されているため、より多くの用語を使用できます。 4ビットヒストグラムは16項、8ビットは256項などです。この種類の計算は遅いので、実際には
SQRT
部分を実行しないでください。あなたのイメージのサイズを十分に小さくする、つまり10,000ピクセルにすると、0,00,0000の値に対してx^2
を実行すればよいことが分かります。ルックアップテーブルx^2
を事前に計算します。ここで、xは0..10,000になります。その後、あなたの計算は速く進むでしょう。パレットから色を選択するとき、その色= 10,0000のヒストグラムを作成するだけです。 2を選択すると、color1 = 5000、color2 = 5000などのヒストグラムを作成します。
最終的にアプリケーションを現実の世界に一致させるためにファジーファクターを追加する必要がありますが、テストでこれらを見つけることができます。
ありがとう私はimageJとこのプログラムのアルゴリズムを使用します http://rsb.info.nih.gov/ij/plugins/color-inspector.html – Emrah
私はファジー最小距離の比較を行うことを言及します。私は薬にかかっていたと思う。ちょうど最小の距離を比較してください。 :) – johnnycrash
おそらく、画像で使用されている色のヒストグラムを作成してから、ユーザーが選択した色に最もよく合うようにします。
私はあなたのデータベースの画像に存在する色の何らかのクラスタリングをお勧めします。私は、データベース内の各画像のために、意味:
- は画像
- の各画素の色を集めるクラスタリングを行う(さんが5つのクラスタとのk平均クラスタリングを言わせて)収集した色に
- 店
ユーザーが1つ以上のクエリカラーのセットを指定すると、特定の色とカラーディスクリプタの間で最もよく一致するものを選択するような貪欲なマッチングが行われます(5つの象徴的な色)あなたのデータベースの各イメージの。
サイズにもよりますが、検索インデックスの中には、アロゴリスそのものよりも大きな問題がある可能性があるため、画像コレクションのサイズはどのくらいですか?
- 1. Googleの視覚的類似画像API
- 2. k-Nearest Neighbor VS類似性検索
- 3. 検索用語の類似性スコア
- 4. 弾性検索一語の類似度
- 5. 視覚的に類似した製品のコグニティブ画像検索で404エラーが発生する
- 6. 類似検索と意味検索
- 7. ニュース項目の類似性(トピックの)アルゴリズム
- 8. 文の類似性アルゴリズムへのアプローチ
- 9. ビットマップデータの類似アルゴリズム
- 10. データベースから視覚的に似た写真を見つけるためのアルゴリズム?
- 11. R検索類似類似度スパース行列
- 12. 類似の製品を属性別に検索する
- 13. Luceneとの類似/関連性の低い文書の検索
- 14. vimdiffの類似性検索メカニズムを改善する方法
- 15. 既存の視覚化で検索
- 16. 類似の受注をSQLで検索
- 17. クロップド類似画像の検索
- 18. 物理ユニットの類似検索
- 19. 類似性メトリック
- 20. 画像類似性検出のテンソルフローモデル
- 21. 効率的なjaccardの類似性DocumentTermMatrix
- 22. 類似性マトリックスの効果的なクラスタリング
- 23. Android - ファジー/近似/類似の一致で連絡先を検索
- 24. 類似性のマッチングアルゴリズム
- 25. 弾性の類似性discount_overlaps
- 26. テキストの類似性のためのアルゴリズム/ライブラリ
- 27. アルゴリズムを探す: '類似性'によるクラスタリング
- 28. アルゴリズムの視覚化の仕方は?
- 29. 視覚的な認識のカスタム分類の最大クラス?
- 30. 類似した文を配列内で一致させる弾性検索
「視覚的な類似性」の検出はよく分かりません。色分け(色と面積の共有)に似ています。色は数値コンポーネントで構成されているため、これにクロールするアルゴリズムを構築することができます。 –