私はscikit LDA分類器を使っていくつかのデータを分類しようとしています。私はそれから "期待する"ことを完全には確信していないが、私が得ているのは変だ。テクニックの欠点、あるいは私がそれを間違って適用する方法のいずれかについて学ぶよい機会のようです。私は、このデータを完全に分けることはできないと考えていますが、探している線よりも「良い」線が多いようです。私はデフォルトのオプションを使用しています。どのようにこれを行うにはどのような考え?私は自分のデータセットのサイズでLDA because it is linearを使用しています。私は線形SVMも同様の複雑さを持っていると思います。おそらく、そのようなデータの方がいいでしょうか?私は他の可能性をテストしたときに更新します。scikit LDAが予期せぬ結果を出すのを覚えている
ピクチャは:
import numpy as np
from numpy import array
import matplotlib.pyplot as plt
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
import itertools
X = array([[ 0.23125754, 0.79170351],
[ 0.78021491, -0.24999486],
[ 0.00856446, 0.41452734],
[ 0.66381753, -0.09872504],
[-0.03178685, 0.04876317],
[ 0.65574645, -0.68214948],
[ 0.14290684, 0.38256002],
[ 0.05156987, 0.11094875],
[ 0.06843403, 0.19110019],
[ 0.24070898, -0.07403764],
[ 0.03184353, 0.4411446 ],
[ 0.58708124, -0.38838008],
[-0.00700369, 0.07540799],
[-0.01907816, 0.07641038],
[ 0.30778608, 0.30317186],
[ 0.55774143, -0.38017325],
[-0.00957214, -0.03303287],
[ 0.8410637 , 0.158594 ],
[-0.00294113, -0.00380608],
[ 0.26577841, 0.07833684],
[-0.32249375, 0.49290502],
[ 0.11313078, 0.35697211],
[ 0.41153679, -0.4471876 ],
[-0.00313315, 0.30065913],
[ 0.14344143, -0.19127107],
[ 0.04857767, 0.01339191],
[ 0.5865007 , 0.71209886],
[ 0.08157439, 0.40909955],
[ 0.72495202, 0.29583866],
[-0.09391461, 0.17976605],
[ 0.06149141, 0.79323099],
[ 0.52208024, -0.2877661 ],
[ 0.01992141, -0.00435266],
[ 0.68492617, -0.46981335],
[-0.00641231, 0.29699622],
[ 0.2369677 , 0.140319 ],
[ 0.6602586 , 0.11200433],
[ 0.25311836, -0.03085372],
[-0.0895014 , 0.45147252],
[-0.18485667, 0.43744524],
[ 0.94636701, 0.16534406],
[ 0.01887734, -0.07702135],
[ 0.91586801, 0.17693792],
[-0.18834833, 0.31944796],
[ 0.20468328, 0.07099982],
[-0.15506378, 0.94527383],
[-0.14560083, 0.72027034],
[-0.31037647, 0.81962815],
[ 0.01719756, -0.01802322],
[-0.08495304, 0.28148978],
[ 0.01487427, 0.07632112],
[ 0.65414479, 0.17391618],
[ 0.00626276, 0.01200355],
[ 0.43328095, -0.34016614],
[ 0.05728525, -0.05233956],
[ 0.61218382, 0.20922571],
[-0.69803697, 2.16018536],
[ 1.38616732, -1.86041621],
[-1.21724616, 2.72682759],
[-1.26584365, 1.80585403],
[ 1.67900048, -2.36561699],
[ 1.35537903, -1.60023078],
[-0.77289615, 2.67040114],
[ 1.62928969, -1.20851808],
[-0.95174264, 2.51515935],
[-1.61953649, 2.34420531],
[ 1.38580104, -1.9908369 ],
[ 1.53224512, -1.96537012]])
y = array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1.])
classifier = LDA()
classifier.fit(X,y)
xx = np.array(list(itertools.product(np.linspace(-4,4,300), np.linspace(-4,4,300))))
yy = classifier.predict(xx)
b_colors = ['salmon' if yyy==0 else 'deepskyblue' for yyy in yy]
p_colors = ['r' if yyy==0 else 'b' for yyy in y]
plt.scatter(xx[:,0],xx[:,1],s=1,marker='o',edgecolor=b_colors,c=b_colors)
plt.scatter(X[:,0], X[:,1], marker='o', s=5, c=p_colors, edgecolor=p_colors)
plt.show()
UPDATE:sklearn.discriminant_analysis.LinearDiscriminantAnalysis
にsklearn.svm.LinearSVC
を使用してから変更
コード(水色は私LDA分類器はダークブルーであろう予測するものです)デフォルトオプションを使用しても、次の画像が得られます。
ヒンジ損失の代わりにゼロ1損失を使用すると便利だと思いますが、sklearn.svm.LinearSVC
はカスタム損失機能を許可していないようです。
UPDATE:損失関数sklearn.svm.LinearSVC
へのパラメータC
が無限大に行くように、ゼロ・ワン損失に近づきます。 C = 1000
を設定すると、もともと私が望んでいたことがわかります。元の質問はLDAに関するものだったので、これを答えとして掲示しない。
ピクチャ: