2016-01-23 36 views
10

このプログラムは、オブジェクトが単列(小さい画像)であるかどうかを識別します。opencvで駐車場を検出

from __future__ import division 
from collections import defaultdict 
from collections import OrderedDict 
from cv2 import line 
import cv2 
from matplotlib import pyplot as plt 
from networkx.algorithms import swap 
from numpy import mat 
from skimage.exposure import exposure 
import numpy as np 
from org import imutils 
from numpy.core.defchararray import rindex 
import sys 

def line(p1, p2): 
    A = (p1[1] - p2[1]) 
    B = (p2[0] - p1[0]) 
    C = (p1[0]*p2[1] - p2[0]*p1[1]) 
    return A, B, -C 

def intersection(L1, L2): 
    D = L1[0] * L2[1] - L1[1] * L2[0] 
    Dx = L1[2] * L2[1] - L1[1] * L2[2] 
    Dy = L1[0] * L2[2] - L1[2] * L2[0] 
    if D != 0: 
     x = Dx/D 
     y = Dy/D 
     return x,y 
    else: 
     return False 

def comupteIntersect(hline,vline): 
    hx1=hline[0];hy1=hline[1];hx2=hline[2];hy2=hline[3]; 
    vx3=vline[0];vy3=vline[1];vx4=vline[2];vy4=vline[3]; 


    return 0; 

input = sys.argv[1] 

# CascadeClassifier class to detect objects. cas1.xml will have the trained data 
face_cascade = cv2.CascadeClassifier(sys.argv[2]) 

# im will have the input in image format 
im = cv2.imread(input) 
im2=im 

# cvtColor Converts an image from one color space to another. 
gray=cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) 
# apply diverse linear filters to smooth images using GaussianBlur 
blur = cv2.GaussianBlur(gray,(5,15),0) 
# apply segmentation 
# Application example: Separate out regions of an image corresponding to objects which we want to analyze. This separation is based on the variation of intensity between the object pixels and the background pixels. 
# To differentiate the pixels we are interested in from the rest (which will eventually be rejected), we perform a comparison of each pixel intensity value with respect to a threshold (determined according to the problem to solve). 
# Once we have separated properly the important pixels, we can set them with a determined value to identify them (i.e. we can assign them a value of 0 (black), 255 (white) or any value that suits your needs). 

ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) 

# Contours can be explained simply as a curve joining all the continuous points (along the boundary), having same color or intensity. The contours are a useful tool for shape analysis and object detection and recognition. 
# 
# For better accuracy, use binary images. So before finding contours, apply threshold or canny edge detection. 
# findContours function modifies the source image. So if you want source image even after finding contours, already store it to some other variables. 
# In OpenCV, finding contours is like finding white object from black background. So remember, object to be found should be white and background should be black. 
contours, hierarchy = cv2.findContours(th3,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) 

# by here skeleton would have been drawn 

#to draw the contour in the image enable the below line 
#img = cv2.drawContours(im, contours, -1, (0,255,0), 1) 
idx =0 
for cnt in contours: 
    x,y,w,h = cv2.boundingRect(cnt) 
    if w-x>900 and h-y>100: 
     roi=im[y:y+h,x:x+w] 
     crop_rect=im[y:y+h,x:x+w] 
#   cv2.imshow('crop_rect',crop_rect) 
#   cv2.waitKey(0) 
     idx+=1 
     cv2.imwrite('crp_contour'+str(idx) + '.jpg', crop_rect) 

im4=crop_rect 
im3=crop_rect 
gray=cv2.cvtColor(crop_rect,cv2.COLOR_BGR2GRAY) 
blur = cv2.GaussianBlur(gray,(5,15),0) 
ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) 
contours, hierarchy = cv2.findContours(th3,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) 

rect=None 

for cnt in contours: 
    x1=[] 
    y1=[] 
    rect = cv2.minAreaRect(cnt) 
    box = cv2.cv.BoxPoints(rect) 
    box = np.int0(box) 

    x1.append(box[0][0]); 
    x1.append(box[1][0]); 
    x1.append(box[2][0]); 
    x1.append(box[3][0]); 
    y1.append(box[0][1]); 
    y1.append(box[1][1]); 
    y1.append(box[2][1]); 
    y1.append(box[3][1]); 
    x=np.amin(x1) 
    y=np.amin(y1) 
    w=np.amax(x1) 
    h=np.amax(y1) 
#  re = cv2.rectangle([box]) 
#  x,y,w,h = cv2.boundingRect(cnt) 
    if w-x>900 and h-y>100: 
     rect = cv2.minAreaRect(cnt) 
     box = cv2.cv.BoxPoints(rect) 
     box = np.int0(box) 
     x,y,w,h = cv2.boundingRect(cnt) 
#   crop_rect1=crop_rect[y:y+h,x:x+w] 
#   cv2.imshow('crop_rect',crop_rect1) 
#   cv2.waitKey(0) 
     break 

#(top-left corner(x,y), (width, height), angle of rotation) 
x=rect[0][0] 
y=rect[0][1] 
w=rect[1][0] 
h=rect[1][1] 
angle=rect[2] 
if rect[2]<-45: 
    angle += 90.0; 
    temp=w 
    w=h 
    h=temp 

center=(x+w)/2,(y+h)/2 

img=crop_rect.copy() 
rot_mat = cv2.getRotationMatrix2D(center, angle, 1); 
dst=cv2.warpAffine(crop_rect,rot_mat, (int(w),int(h))); 
# cv2.imshow('Rotated and Cropped Image',dst) 
# cv2.waitKey(0) 


horizontal = [] 

im6=dst 
im4=im6 
im3=im6 

gray=cv2.cvtColor(im6,cv2.COLOR_BGR2GRAY) 
edges = cv2.Canny(gray,50,150,apertureSize = 3) 
# cv2.imshow('edges Image',edges) 
# cv2.waitKey(0) 

# Find the edge of the image 
# lines = cv2.HoughLines(edges,1,np.pi/95,40) 
lines = cv2.HoughLines(edges,1,np.pi/180,40) 
for rho,theta in lines[0]: 
    pt1 = [] 
    im5=im6 
    if (theta<np.pi/180*95 and theta>np.pi/180*88): 
     if (rho==78.0): 
      a = np.cos(theta) 
      b = np.sin(theta) 
      x0 = a*rho 
      y0 = b*rho 
      x1 = int(x0 + 1000*(-b)) 
      y1 = int(y0 + 1000*(a)) 
      x2 = int(x0 - 1000*(-b)) 
      y2 = int(y0 - 1000*(a)) 
      pt1.append(x1) 
      pt1.append(y1) 
      pt1.append(x2) 
      pt1.append(y2) 
      horizontal.append(pt1) 
      cv2.line(im5,(x1,y1),(x2,y2),(0,0,255),2) 
#    cv2.imshow('for',im5) 
#    cv2.waitKey(0) 
      break 
# 

diff = h-y 
toty1 = diff+y1+20.0 
toty2 = diff+y2+20.0 

#cv2.line(im5,(int(x1),int(toty1)),(int(x2),int(toty2)),(0,0,255),2) 
pt1 = [] 
pt1.append(int(x1)) 
pt1.append(int(toty1)) 
pt1.append(int(x2)) 
pt1.append(int(toty2)) 
horizontal.append(pt1) 

minLineLength = 50 
maxLineGap = 10 
im7=im3 
gray = cv2.cvtColor(im5, cv2.COLOR_BGR2GRAY) 
gray = cv2.bilateralFilter(gray, 11, 17, 17) 
edged = cv2.Canny(gray, 30, 200) 
m,n = gray.shape 
L=[] 
lines = cv2.HoughLines(edged, 2, np.pi/180,10,0,0)[0] 
# or theta>np.pi/180*80 and theta<np.pi/180*100 or theta>np.pi/180*170 or theta<np.pi/180*10 
i=0 
d = defaultdict(list) 

for (rho,theta) in lines: 
    if(i<1000): 
     if(theta>np.pi/180*170 or theta<np.pi/180*10): 
      if(theta!=0 and rho!=-795.0 and rho!=-745.0 and rho!=-749.0 and rho!=425.0 and rho!=251.0 and rho!=253.0): 
       l=[] 
       x0 = np.cos(theta)*rho 
       y0 = np.sin(theta)*rho 
       pt1 = (int(x0 + (m+n)*(-np.sin(theta))), int(y0 + (m+n)*np.cos(theta))) 
       pt2 = (int(x0 - (m+n)*(-np.sin(theta))), int(y0 - (m+n)*np.cos(theta))) 
       if (pt1[0]==-92 or pt1[0]==-27 or pt1[0]==65 or pt1[0]==154 or pt1[0]==315 or pt1[0]==409 or 
        pt1[0]==469 or pt1[0]==519 or pt1[0]==549 or pt1[0]==573 or pt1[0]==592): 
#      cv2.line(im3, pt1,pt2 ,(255,0,0), 2,cv2.cv.CV_AA) 
#      cv2.imshow('img44',im3) 
#      cv2.waitKey(0) 
        #b=str(pt1)+","+str(pt2) 
        l.append(pt1) 
        l.append(pt2) 
        L.append(l) 
        d[pt1[0]].append(l) 
       i+=1 
    else: 
     break 

sdict=OrderedDict(sorted(d.items(), key=lambda t: t[0])) 
vertical = []   

xcoordinates=[] 
ycoordinates=[] 
i=0;j=0; 

p=[] 
pt=[] 
for t in range(0,6): 
    p.append(t) 
    pt.append(p) 

ncars = 0 
sub_image_point=[]; 
# process each full parking slot image 
for a in sdict: 
    vx3=sdict[a][0][0][0];vy3=sdict[a][0][0][1];vx4=sdict[a][0][1][0];vy4=sdict[a][0][1][1]; 
    pt[0]=[];pt[4]=[] 
    pt[0].append(vx3);pt[0].append(vy3); 
    pt[4].append(vx4);pt[4].append(vy4); 
    j+=1; 
    if (j!=1): 
     for k in range(0,2): 
      i+=1 
      pt1=pt[k+k*k] 
      pt2=pt[k+2*2] 
      L1=line(pt1,pt2) 
      for hline in horizontal: 
       pt3=[];pt4=[] 
       hx1=hline[0];hy1=hline[1];hx2=hline[2];hy2=hline[3]; 
       pt3.append(hx1);pt3.append(hy1); 
       pt4.append(hx2);pt4.append(hy2); 
       L2=line(pt3,pt4) 
       R = intersection(L1, L2) 
       if R: 
        xcoordinates.append(R.__getitem__(0)) 
        ycoordinates.append(R.__getitem__(1)) 
       else: 
        print "\n","No single intersection point detected" 
      if i==2: 
       i=0; 
       pt[2]=pt[0];pt[5]=pt[4];p=[]; 
       p.append(np.amin(ycoordinates));p.append(np.amax(ycoordinates)); 
       p.append(np.amin(xcoordinates));p.append(np.amax(xcoordinates)); 
       sub_image_point.append(p) 
#     crop_rect=im3[np.amin(ycoordinates):np.amax(ycoordinates),np.amin(xcoordinates):np.amax(xcoordinates)] 
#     cv2.imshow('Crop_Rect',crop_rect) 
#     cv2.waitKey(0) 
       xcoordinates=[] 
       ycoordinates=[] 

    else: 
     pt[2]=[];pt[5]=[] 
     pt[2]=pt[0];pt[5]=pt[4]; 
cv2.destroyAllWindows() 


i=0; 
pt=[] 

# process slice of each full parking slot image 
for p in sub_image_point: 
    i+=1 
    x1=p[0];y1=p[1];x2=p[2];y2=p[3]; 
    crop_rect=im3[x1:y1,x2:y2] 
    cars = face_cascade.detectMultiScale(crop_rect, 1.1,5) 
    for (x,y,w,h) in cars: 
     cv2.rectangle(crop_rect,(x,y),(x+w,y+h),(0,0,255),2) 
     ncars = ncars + 1 
     print "\n",ncars, "Car is detected in ",i," slot" 
     pt.append(i) 
     # show result 
#   cv2.imshow("Result",crop_rect) 
#   cv2.waitKey(0); 

i=0; 
pt1=[] 
print "\n","occupied slots: ",pt1 
for p in pt: 
    print " ",p 

分類 - https://github.com/abhi-kumar/CAR-DETECTION/blob/master/cas1.xml

は、画像1つの行で車を識別します。 enter image description here

しかし、2行の画像からオブジェクトを識別できません。 enter image description here

+0

あなたはどのバージョンのPythonとOpenCVを使用していますか?あなたのタグ以外では、cv2.cv.BoxPoints(rect)はOpenCV 3.0ではありません。 – tfv

答えて

3

私は2つのsolutions.Iにより第2の画像の矩形を見つけることができますは、C++で問題を解決していますが、使いやすさでのpythonに

ソリューション1、それを変換することができるはずです:しきい値とcountoursを。

1:画像

2に大津の閾値を適用する:輪郭 を見つける:

3画像拡張コードである

有効な矩形を見つける

void identify_ob_by_edges(cv::Mat const &img) 
{ 
    cv::Mat gray; 
    cv::cvtColor(img, gray, CV_BGR2GRAY); 
    cv::threshold(gray, gray, 0, 255, 
        cv::THRESH_BINARY | cv::THRESH_OTSU); 
    auto const kernel = 
      cv::getStructuringElement(cv::MORPH_RECT, {7,7}); 
    cv::dilate(gray, gray, kernel); 

    std::vector<std::vector<cv::Point>> contours; 
    cv::findContours(gray.clone(), contours, cv::RETR_TREE, 
        cv::CHAIN_APPROX_SIMPLE); 
    cv::Mat img_copy = img.clone(); 
    for(auto const &contour : contours){ 
     auto const rect = cv::boundingRect(contour); 
     if(rect.area() >= 2000 && 
       (rect.height/static_cast<double>(rect.width)) > 1.0){ 
      cv::rectangle(img_copy, rect, {255, 0, 0}, 3); 
     } 
    } 

    cv::imshow("binarize", gray); 
    cv::imshow("color", img_copy); 
    cv::waitKey(); 
    cv::imwrite("result.jpg", img_copy); 
} 

結果は

です。

enter image description here ただし、すべての行が表示されない場合は、解決策2の場合はこれが機能しません。

2:

enter image description here

1つの矩形があります。このソリューションによって描かれていないあなたの場合、これは固定することができ:結果は

/** 
* Work if no critical lines are completely hide 
*/ 
void identify_ob_by_lines(cv::Mat const &img) 
{ 
    cv::Mat gray; 
    cv::cvtColor(img, gray, CV_BGR2GRAY); 
    cv::threshold(gray, gray, 0, 255, 
        cv::THRESH_BINARY | cv::THRESH_OTSU); 

    cv::Mat edges; 
    cv::Canny(gray, edges, 30, 90); 
    std::vector<cv::Vec4i> lines; 
    cv::HoughLinesP(edges, lines, 1, 
        CV_PI/180, 50, 50, 10); 

    std::vector<cv::Vec4i> hor_lines; 
    std::vector<cv::Vec4i> vec_lines; 
    //remove lines with invalid angle 
    for(auto const &l : lines) 
    { 
     auto const p1 = cv::Point(l[0], l[1]); 
     auto const p2 = cv::Point(l[2], l[3]); 
     auto const angle = abs_line_angle(p1, p2); 
     if(angle >= 76){ 
      vec_lines.emplace_back(l); 
     }else if(angle <= 5){ 
      hor_lines.emplace_back(l); 
     } 
    } 

    //remove_adjacent_lines(hor_lines, 1, 400); 
    remove_adjacent_lines(vec_lines, 0, 30); 

    //draw lines on blank image 
    cv::Mat blank = cv::Mat::zeros(img.size(), CV_8U); 
    draw_lines(blank, hor_lines, {255}); 
    draw_lines(blank, vec_lines, {255}); 

    //find the contours of blank image 
    std::vector<std::vector<cv::Point>> contours; 
    cv::findContours(blank.clone(), contours, cv::RETR_TREE, 
        cv::CHAIN_APPROX_SIMPLE); 
    for(auto const &contour : contours){ 
     auto const rect = cv::boundingRect(contour); 
     if(rect.area() >= 2000 && 
       (rect.height/static_cast<double>(rect.width)) > 1.0){ 
      //cv::rectangle(img_copy, rect, {255, 0, 0}, 3); 
      auto const min_rect = cv::minAreaRect(contour); 
      cv::Point2f rect_points[4]; 
      min_rect.points(rect_points); 
      for(size_t j = 0; j < 4; ++j){ 
       cv::line(img, rect_points[j], 
         rect_points[(j+1)%4], {255, 0, 0}, 2, 8); 
      } 
     } 
    } 

    cv::imshow("img copy", img); 
    cv::waitKey(); 
    cv::imwrite("result.jpg", blank); 
} 

長方形を見つけるために、HoughLinesPと輪郭を使いますイメージ1が水平線を隠していなければ、解像度2もイメージ1で動作するはずです。通常の場合、そのような線は隠されていないと思います。そうであれば、あなたは自分で距離を測定して線を描くことができます。

私はあなたにdlibを試してみることをお勧めします、dlibのオブジェクト検出器はすごいです。

ソースコードはgithubにあります。

関連する問題