使用されるトレーニングパラメータは、dlibのコードhttp://dlib.net/dlib/image_processing/frontal_face_detector.h.htmlのコメントに記録されています。参考:
It is built out of 5 HOG filters. A front looking, left looking, right looking,
front looking but rotated left, and finally a front looking but rotated right one.
Moreover, here is the training log and parameters used to generate the filters:
The front detector:
trained on mirrored set of labeled_faces_in_the_wild/frontal_faces.xml
upsampled each image by 2:1
used pyramid_down<6>
loss per missed target: 1
epsilon: 0.05
padding: 0
detection window size: 80 80
C: 700
nuclear norm regularizer: 9
cell_size: 8
num filters: 78
num images: 4748
Train detector (precision,recall,AP): 0.999793 0.895517 0.895368
singular value threshold: 0.15
The left detector:
trained on labeled_faces_in_the_wild/left_faces.xml
upsampled each image by 2:1
used pyramid_down<6>
loss per missed target: 2
epsilon: 0.05
padding: 0
detection window size: 80 80
C: 250
nuclear norm regularizer: 8
cell_size: 8
num filters: 63
num images: 493
Train detector (precision,recall,AP): 0.991803 0.86019 0.859486
singular value threshold: 0.15
The right detector:
trained left-right flip of labeled_faces_in_the_wild/left_faces.xml
upsampled each image by 2:1
used pyramid_down<6>
loss per missed target: 2
epsilon: 0.05
padding: 0
detection window size: 80 80
C: 250
nuclear norm regularizer: 8
cell_size: 8
num filters: 66
num images: 493
Train detector (precision,recall,AP): 0.991781 0.85782 0.857341
singular value threshold: 0.19
The front-rotate-left detector:
trained on mirrored set of labeled_faces_in_the_wild/frontal_faces.xml
upsampled each image by 2:1
used pyramid_down<6>
rotated left 27 degrees
loss per missed target: 1
epsilon: 0.05
padding: 0
detection window size: 80 80
C: 700
nuclear norm regularizer: 9
cell_size: 8
num images: 4748
singular value threshold: 0.12
The front-rotate-right detector:
trained on mirrored set of labeled_faces_in_the_wild/frontal_faces.xml
upsampled each image by 2:1
used pyramid_down<6>
rotated right 27 degrees
loss per missed target: 1
epsilon: 0.05
padding: 0
detection window size: 80 80
C: 700
nuclear norm regularizer: 9
cell_size: 8
num filters: 89
num images: 4748
Train detector (precision,recall,AP): 1 0.897369 0.897369
singular value threshold: 0.15
パラメータの設定方法と設定方法は、すべてdlibのマニュアルで説明しています。トレーニングアルゴリズムについて説明している論文もある:Max-Margin Object Detection。
はい、トレーナーを実行するには多くのRAMが必要です。
ダウンロード用のデータセットとXMLはどこにありますか? –
あなたが投稿したURLです。 –
見つけた、ありがとう。回転左、回転右のバージョンについては、正面から人為的に計算されます。 –