はこれを行う方法の例です:
with tf.Graph().as_default():
tf_global_step = slim.get_or_create_global_step()
network_fn = nets_factory.get_network_fn("inception_v4",
num_classes=5,
is_training=False)
##############################################################
# Create a dataset provider that loads data from the dataset #
##############################################################
provider = slim.dataset_data_provider.DatasetDataProvider(
dataset,
shuffle=False,
common_queue_capacity=2,
common_queue_min=1)
[images] = provider.get(['image'])
#####################################
# Select the preprocessing function #
#####################################
image_preprocessing_fn = preprocessing_factory.get_preprocessing(
"inception_v4",
is_training=False)
eval_image_size = network_fn.default_image_size
images = image_preprocessing_fn(images, eval_image_size, eval_image_size)
images = tf.reshape(images, [eval_image_size, eval_image_size, 3])
images, _ = tf.train.batch(
[images, 0],
batch_size=len(dataset.data_sources),
num_threads=1,
capacity=len(dataset.data_sources))
####################
# Define the model #
####################
logits, _ = network_fn(images)
variables_to_restore = slim.get_variables_to_restore()
soft = tf.nn.softmax(logits, 1)
predictions = tf.argmax(logits, 1)
num_batches = 1
if tf.gfile.IsDirectory(checkpoint_path):
checkpoint_path = tf.train.latest_checkpoint(checkpoint_path)
tf.logging.info('Evaluating %s' % checkpoint_path)
r_logits, r_soft, r_prediction = slim.evaluation.evaluate_once(
master='',
checkpoint_path=checkpoint_path,
logdir=eval_dir,
num_evals=num_batches,
eval_op=[],
final_op=[logits, soft, predictions],
variables_to_restore=variables_to_restore)