0
my_data <- c(232,294,320,314,336,189,331,185,161,140,49,7,0,3,4,9,38,169,275,316,366,422,328,283,213,238,220,193,250,308,224,190,188,99,41,17,19,9,1,3,10,108,149,189,168,170,155,101,119,89,142,169,192,242,152,141,105,76,39,20,17,13,5,3,8,54,102,102,155,159,164,200,183,144,204,190,219,158,128,142,130,86,58,13,12,0,6,4,20,302,297,312,345,293,233,275,233,199,279,250,208,161,200,181,133,140,17,14,2,0,2,4,36,183,379,371,356,425,320,282,172,214,226,250,196,239,183,194,135,75,28,11,2,3,5,4,29,212,316,343,375,431,225,248,209,258,262,230,218,162,193,178,126,131,37,7,5,3,0,1,20,149,258,408,316,307,352,247,285,236,254,321,233,175,264,114,104,82,37,49,4,16,2,14,22,169,259,355,379,346,261,256,220,238,227,201,242,185,121,160,114,91,33,9,4,2,0,2,22,62,114,156,190,186,140,155,141,135,140,137,179,128,156,124,98,66,63,32,27,0,21,5,4,39,73,162,175,207,183,121,174,107,160,177,258,170,152,165,117,59,35,69,7,0,3,3,28,98,165,194,200,190,162,160,170,200,189,187,141,224,152,115,111,47,20,15,2,0,0,29,10,59,170,212,164,201,193,182,277,283,376,310,194,247,177,164,140,192,95,49,10,10,2,5,38,52,156,331,480,378,231,172,132,199,245,267,192,223,182,168,152,81,20,14,13,6,14,16,6,21,51,113,94,103,113,93,205,98,118,97,138,112,98,99,79,74,71,38,31,30,31,38,41,48,131,159,212,134,150,145,149,105,142,149,122,137,193,105,68,75,35,33,41,38,33,29,44,54,85,109,118,117,113,107,112,92,112,98,111,81,120,113,66,55,10,20,26,25,3,10,15,30,60,91,97,67,100,99,75,92,98,126,116,103,110,87,124,66,55,30,31,28,28,31,29,49,109,144,152,116,106,88,164,127,121,161,186,104,81,79,103,69,47,35,35,30,28,34,42,56,114,110,149,153,112,151,138,151,141,139,206,225,166,173,185,384,221,100,61,51,35,44,38,83,87,182,205,243,191,144,106,112,167,234,147,136,152,107,156,53)
my_dataは、acf/pacf相関プロットからわかるように、24ピリオドのクリアシーズンを持っています。 auto.arimaは季節を捕捉するために設定することができますどのように予測パッケージのauto.arima()の季節性
library(forecast)
tsdisplay(my_data)
残念なことに
auto.arima(my_data, seasonal = TRUE, approximation = FALSE, stepwise = FALSE)
のみ(P、D、Q)因子ではなく、予想される(P、D、Q)(P、D、Q)[24]
Series: my_data
ARIMA(3,1,2)
Coefficients:
ar1 ar2 ar3 ma1 ma2
1.8061 -0.8164 -0.0587 -1.9453 0.9672
s.e. 0.0478 0.0896 0.0474 0.0178 0.0171
sigma^2 estimated as 2261: log likelihood=-2581.68
AIC=5175.36 AICc=5175.54 BIC=5200.52
を占め
@nograpes、私はあなたが助けてくれると思った。 – Amitai
@ Zheyuan Li、それはARIMAモデル https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_averageのパラメータの標準表記法です。 同じ表記法(P、D、Q)は、関数のドキュメント(https://cran.r-project.org/web/packages/forecast/forecast.pdf)に季節パラメータの表記としても表示されます。 [24]は、シーズンが24期間のシーズンを指すことを意味します。 – Amitai