1
私は、LSTMがKerasを使ってどのように動作するかを理解するために、ダミーの例を取り上げています。 データの入出力を再構成する方法に問題があります。Keras reshape input LSTM
とValueError:入力0は層の再発と互換性がありません:ndim = 3、見つけ予想ndim = 2
import random
import numpy as np
from keras.layers import Input, LSTM, Dense
from keras.layers.wrappers import TimeDistributed
from keras.models import Model
def gen_number():
return np.random.choice([random.random(), 1], p=[0.2, 0.8])
truth_input = [gen_number() for i in range(0,2000)]
# shift input by one
truth_shifted = truth_input[1:] + [np.mean(truth_input)]
truth = np.array(truth_input)
test_ouput = np.array(truth_shifted)
truth_reshaped = truth.reshape(1, len(truth), 1)
shifted_truth_reshaped = test_ouput.reshape(1, len(test_ouput), 1)
yes = Input(shape=(len(truth_reshaped),), name = 'truth_in')
recurrent = LSTM(20, return_sequences=True, name='recurrent')(yes)
TimeDistributed_output = TimeDistributed(Dense(1), name='test_pseudo')(recurrent)
model_built = Model(input=yes, output=TimeDistributed_output)
model_built.compile(loss='mse', optimizer='adam')
model_built.fit(truth_reshaped, shifted_truth_reshaped, nb_epoch=100)
どのように私が正しく入力にデータを行う必要があるでしょうか?
[ケラスLSTMの入力および出力シェイプの処理方法](http://stackoverflow.com/questions/39969717/how-to-process-input-and-output-shape-for-keras-lstm) ) –