私はこのような入力データを有する:列車LSTMを用いたモデルとkeras
x_train = [
[0,0,0,1,-1,-1,1,0,1,0,...,0,1,-1],
[-1,0,0,-1,-1,0,1,1,1,...,-1,-1,0]
...
[1,0,0,1,1,0,-1,-1,-1,...,-1,-1,0]
]
y_train = [1,1,1,0,-1,-1,-1,0,1...,0,1]
それは各アレイは83 のサイズを有し、y_train、これらのそれぞれについてlableあるarryasのアレイでありますアレイ。 だからlen(x_train)
はlen(y_train)
と同じです。 私はこのコードのようなデータの訓練のためにkerasとtheanoバックエンドから使用:
def train(x, y, x_test, y_test):
x_train = np.array(x)
y_train = np.array(y)
print x_train.shape
print y_train.shape
model = Sequential()
model.add(Embedding(x_train.shape[0], output_dim=256))
model.add(LSTM(128))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=16)
score = model.evaluate(x_test, y_test, batch_size=16)
print score
が、私のネットワークが合わなかったと結果は次のとおりです。
Epoch 1/10
1618/1618 [==============================] - 4s - loss: -1.6630 - acc: 0.0043
Epoch 2/10
1618/1618 [==============================] - 4s - loss: -2.5033 - acc: 0.0012
Epoch 3/10
1618/1618 [==============================] - 4s - loss: -2.6150 - acc: 0.0012
Epoch 4/10
1618/1618 [==============================] - 4s - loss: -2.6297 - acc: 0.0012
Epoch 5/10
1618/1618 [==============================] - 4s - loss: -2.5731 - acc: 0.0012
Epoch 6/10
1618/1618 [==============================] - 4s - loss: -2.6042 - acc: 0.0012
Epoch 7/10
1618/1618 [==============================] - 4s - loss: -2.6257 - acc: 0.0012
Epoch 8/10
1618/1618 [==============================] - 4s - loss: -2.6303 - acc: 0.0012
Epoch 9/10
1618/1618 [==============================] - 4s - loss: -2.6296 - acc: 0.0012
Epoch 10/10
1618/1618 [==============================] - 4s - loss: -2.6298 - acc: 0.0012
283/283 [==============================] - 0s
[-2.6199024279631482, 0.26501766742328875]
私はこのトレーニングを行うと、取得したいです良い結果。
10回の短いエポックを練習します。もっと訓練すればどうなりますか? –
@JonasAdlerでも100エポックと同じ結果が得られます。 –
@JonasAdlerどうやってテンソルフローで列車を走らせることができますか? –