私はscikit-learnを使ってPythonで株式予測システムを作ろうとしています。sklearn.svm.SVCのカスタムカーネル関数をどのように定義できますか?
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
from sklearn import svm,preprocessing
from sklearn.metrics import precision_recall_fscore_support
import pandas as pd
import time
##import statistics
def my_kernel(X, Y):
"""
We create a custom kernel:
(2 0)
k(X, Y) = X ( ) Y.T
(0 1)
"""
M = np.array([[2, 0], [0, 1.0]])
return np.dot(np.dot(X, M), Y.T)
FEATURES = ['DE Ratio',
'Trailing P/E',
'Price/Sales',
'Price/Book',
'Profit Margin',
'Operating Margin',
'Return on Assets',
'Return on Equity',
'Revenue Per Share',
'Market Cap',
'Enterprise Value',
'Forward P/E',
'PEG Ratio',
'Enterprise Value/Revenue',
'Enterprise Value/EBITDA',
'Revenue',
'Gross Profit',
'EBITDA',
'Net Income Avl to Common ',
'Diluted EPS',
'Earnings Growth',
'Revenue Growth',
'Total Cash',
'Total Cash Per Share',
'Total Debt',
'Current Ratio',
'Book Value Per Share',
'Cash Flow',
'Beta',
'Held by Insiders',
'Held by Institutions',
'Shares Short (as of',
'Short Ratio',
'Short % of Float',
'Shares Short (prior ']
def Build_Data_Set():
data_df = pd.DataFrame.from_csv("key_stats.csv")
data_df = data_df.reindex(np.random.permutation(data_df.index))
##print data_df
X = np.array(data_df[FEATURES].values)
y = (data_df["Status"]
.replace("underperform",0)
.replace("outperform",1)
.values.tolist())
X = preprocessing.scale(X)
X = StandardScaler().fit_transform(X)
Z0 = np.array(data_df["stock_p_hancge"])
Z1 = np.array(data_df["sp500_p_change"])
return X,y,Z0,Z1
def mykernel(X, Y,gamma=None):
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1.0/X.shape[1]
K = euclidean_distances(X, Y, squared=True)
k *= -gamma
np.exp(K, K) # exponentiate K in-place
return safe_sparse_dot(X, Y.T, dense_output=True) + k
size = 2094
invest_amount = 10000
total_invests = 0
if_market = 0
if_strat = 0
X, y , Z0,Z1= Build_Data_Set()
print(len(X))
test_size = len(X) - size -1
start = time.clock()
clf = svm.SVC(kernel="mykernel")
clf.fit(X[:size],y[:size])
y_pred = clf.predict(X[size+1:])
y_true = y[size+1:]
time_taken = time.clock()-start
print time_taken,"Seconds"
for x in range(1, test_size+1):
if y_pred[-x] == 1:
invest_return = invest_amount + (invest_amount * (Z0[-x]/100))
market_return = invest_amount + (invest_amount * (Z1[-x]/100))
total_invests += 1
if_market += market_return
if_strat += invest_return
print accuracy_score(y_true, y_pred)
print precision_recall_fscore_support(y_true, y_pred, average='macro')
print "Total Trades:", total_invests
print "Ending with Strategy:",if_strat
print "Ending with Market:",if_market
compared = ((if_strat - if_market)/if_market) * 100.0
do_nothing = total_invests * invest_amount
avg_market = ((if_market - do_nothing)/do_nothing) * 100.0
avg_strat = ((if_strat - do_nothing)/do_nothing) * 100.0
print "Compared to market, we earn",str(compared)+"% more"
print "Average investment return:", str(avg_strat)+"%"
print "Average market return:", str(avg_market)+"%"
事前に定義されたカーネルが動作しているが、私のカスタムカーネルのために、私はエラーを取得しています:
ValueError: 'mykernel' is not in list
上記のコードは動作するはずのようにそれはそう公式ドキュメントによると、ここに私のコードです。
より
常にあなたの質問に完全なトレースバックを表示してください、最後の行のエラーメッセージだけではありません。問題がどこにあるのかを簡単に特定できます。 –