Sparkはデータを並列に処理しますが、操作は処理しません。私のDAGでは、カラムごとの関数を呼びたい Spark processing columns in parallel各カラムの値は他のカラムとは独立に計算できます。 spark-SQL APIを使ってこのような並列性を達成する方法はありますか?ウィンドウ関数を利用するSpark dynamic DAG is a lot slower and different from hard coded DAGは、DAGを多く最適化するのに役立ちましたが、連続した方法でのみ実行されます。sparkを並列カラムに適用する
情報は以下のhttps://github.com/geoHeil/sparkContrastCoding
最小例見つけることができますもう少し含まれている例:
val df = Seq(
(0, "A", "B", "C", "D"),
(1, "A", "B", "C", "D"),
(0, "d", "a", "jkl", "d"),
(0, "d", "g", "C", "D"),
(1, "A", "d", "t", "k"),
(1, "d", "c", "C", "D"),
(1, "c", "B", "C", "D")
).toDF("TARGET", "col1", "col2", "col3TooMany", "col4")
val inputToDrop = Seq("col3TooMany")
val inputToBias = Seq("col1", "col2")
val targetCounts = df.filter(df("TARGET") === 1).groupBy("TARGET").agg(count("TARGET").as("cnt_foo_eq_1"))
val newDF = df.toDF.join(broadcast(targetCounts), Seq("TARGET"), "left")
newDF.cache
def handleBias(df: DataFrame, colName: String, target: String = target) = {
val w1 = Window.partitionBy(colName)
val w2 = Window.partitionBy(colName, target)
df.withColumn("cnt_group", count("*").over(w2))
.withColumn("pre2_" + colName, mean(target).over(w1))
.withColumn("pre_" + colName, coalesce(min(col("cnt_group")/col("cnt_foo_eq_1")).over(w1), lit(0D)))
.drop("cnt_group")
}
val joinUDF = udf((newColumn: String, newValue: String, codingVariant: Int, results: Map[String, Map[String, Seq[Double]]]) => {
results.get(newColumn) match {
case Some(tt) => {
val nestedArray = tt.getOrElse(newValue, Seq(0.0))
if (codingVariant == 0) {
nestedArray.head
} else {
nestedArray.last
}
}
case None => throw new Exception("Column not contained in initial data frame")
}
})
を今、私はすべての列に自分のhandleBias
機能を適用したい、残念ながら、これは並行して実行されません。それは本当にあなたのケースを助けていない事実ですが、各列の
val res = (inputToDrop ++ inputToBias).toSet.foldLeft(newDF) {
(currentDF, colName) =>
{
logger.info("using col " + colName)
handleBias(currentDF, colName)
}
}
.drop("cnt_foo_eq_1")
val combined = ((inputToDrop ++ inputToBias).toSet).foldLeft(res) {
(currentDF, colName) =>
{
currentDF
.withColumn("combined_" + colName, map(col(colName), array(col("pre_" + colName), col("pre2_" + colName))))
}
}
val columnsToUse = combined
.select(combined.columns
.filter(_.startsWith("combined_"))
map (combined(_)): _*)
val newNames = columnsToUse.columns.map(_.split("combined_").last)
val renamed = columnsToUse.toDF(newNames: _*)
val cols = renamed.columns
val localData = renamed.collect
val columnsMap = cols.map { colName =>
colName -> localData.flatMap(_.getAs[Map[String, Seq[Double]]](colName)).toMap
}.toMap