、まあ今私はのためにそのプログラムを共有していますこれは私がhadoop-1.2.1
jarファイルの依存関係を書いた、それは数を変換するためだったとの言葉でそれらを記述し、これは、任意の単一のエラーなしで4つのラックス番号に加工した、
だからここにプログラムがある -
package com.whodesire.count;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import com.whodesire.numstats.AmtInWords;
public class CountInWords {
public static class NumberTokenizerMapper
extends Mapper <Object, Text, LongWritable, Text> {
private static final Text theOne = new Text("1");
private LongWritable longWord = new LongWritable();
public void map(Object key, Text value, Context context) {
try{
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
longWord.set(Long.parseLong(itr.nextToken()));
context.write(longWord, theOne);
}
}catch(ClassCastException cce){
System.out.println("ClassCastException raiseddd...");
System.exit(0);
}catch(IOException | InterruptedException ioe){
ioe.printStackTrace();
System.out.println("IOException | InterruptedException raiseddd...");
System.exit(0);
}
}
}
public static class ModeReducerCumInWordsCounter
extends Reducer <LongWritable, Text, LongWritable, Text>{
private Text result = new Text();
//This is the user defined reducer function which is invoked for each unique key
public void reduce(LongWritable key, Iterable<Text> values,
Context context) throws IOException, InterruptedException {
/*** Putting the key, which is a LongWritable value,
putting in AmtInWords constructor as String***/
AmtInWords aiw = new AmtInWords(key.toString());
result.set(aiw.getInWords());
//Finally the word and counting is sent to Hadoop MR and thus to target
context.write(key, result);
}
}
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
/****
*** all random numbers generated inside input files has been
*** generated using url https://andrew.hedges.name/experiments/random/
****/
//Load the configuration files and add them to the the conf object
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
Job job = new Job(conf, "CountInWords");
//Specify the jar which contains the required classes for the job to run.
job.setJarByClass(CountInWords.class);
job.setMapperClass(NumberTokenizerMapper.class);
job.setCombinerClass(ModeReducerCumInWordsCounter.class);
job.setReducerClass(ModeReducerCumInWordsCounter.class);
//Set the output key and the value class for the entire job
job.setMapOutputKeyClass(LongWritable.class);
job.setMapOutputValueClass(Text.class);
//Set the Input (format and location) and similarly for the output also
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
//Setting the Results to Single Target File
job.setNumReduceTasks(1);
//Submit the job and wait for it to complete
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
あなたがエラーを見た後、あなたがプロジェクトにmapreduce jarを追加していないようだから、特にhadoop-core-xxxjarに追加したhadoop jarを見直すことをお勧めします私はそれがあなたを助けてくれることを願っています、ありがとう。
私はhadoop 2.7.1を使用します。これらの3つのjarファイルhadoop-common-2.7.1、hadoop-mapreduce-client-jobclient-2.7.1、hadoop-mapreduce-client-core-2.7.1.jarを追加しました。私はそのエラーを再び覚えました。 – programer