2016-11-21 61 views
0

私はモーションブラーの点広がり関数を推定する方法を開発しましたが、PSFを使ってデコンボリューションを実行したいと思います。私はwienerメソッドを使うことにしました。opencvを使ったウィーナーデコンボリューション

cv::Mat deconvolution(cv::Mat input, cv::Mat kernel){ 
    cv::Mat Fin, Fkern, padded_kern, Fdeblur,out; 
    cv::normalize(kernel,kernel); 
    cv::dft(input,Fin,cv::DFT_COMPLEX_OUTPUT); 
    cv::copyMakeBorder(kernel,padded_kern,0,Fin.rows-kernel.rows,0,Fin.cols-kernel.cols,cv::BORDER_CONSTANT,cv::Scalar::all(0)); 
    cv::dft(padded_kern,Fkern,cv::DFT_COMPLEX_OUTPUT); 
    cv::mulSpectrums(Fin,Fkern,Fdeblur,0,true); 
    cv::dft(Fdeblur,out,cv::DFT_INVERSE|cv::DFT_REAL_OUTPUT); 
    cv::normalize(out,out,0, 1, CV_MINMAX); 
    return out; 
    } 

はしかしさえtrueにcv::mulSpectrums(Fin,Fkern,Fdeblur,0,true);最後のオプションを設定した後、私はまだ、通常の畳み込みを行っているようです。最終的な真のオプションは、私がコンジュゲートを乗算してカーネルを分割していることを意味してはいけませんか?

+0

あなたは畳み込みを試してみて、同じカーネルでデコンボリューションしましたか? –

+0

確かに私は試してみたところ、ゼロでない差がありました。 – ACCurrent

+0

同じであってはいけません。このhttps://www.mathworks.com/help/images/ref/deconvwnr.htmlをチェックし、OpenCVの実装もチェックしてください:https://github.com/norishigefukushima/OpenCVFFTBasedGaussianFilter anso checkこのリンク:http://yuzhikov.com/articles/BlurredImagesRestoration1.htm –

答えて

0

ただ、このフィルタを実装:(あなたが100%の回復を、それを見ないよう)

#include <windows.h> 
#include <iostream> 
#include <vector> 
#include <stdio.h> 
#include "fstream" 
#include "iostream" 
#include <algorithm> 
#include <iterator> 
#include "opencv2/opencv.hpp" 

using namespace std; 
using namespace cv; 

#include <iostream> 

#include <vector> 

void Recomb(Mat &src, Mat &dst) 
{ 
    int cx = src.cols >> 1; 
    int cy = src.rows >> 1; 
    Mat tmp; 
    tmp.create(src.size(), src.type()); 
    src(Rect(0, 0, cx, cy)).copyTo(tmp(Rect(cx, cy, cx, cy))); 
    src(Rect(cx, cy, cx, cy)).copyTo(tmp(Rect(0, 0, cx, cy))); 
    src(Rect(cx, 0, cx, cy)).copyTo(tmp(Rect(0, cy, cx, cy))); 
    src(Rect(0, cy, cx, cy)).copyTo(tmp(Rect(cx, 0, cx, cy))); 
    dst = tmp; 
} 

void convolveDFT(Mat& A, Mat& B, Mat& C) 
{ 
    // reallocate the output array if needed 
    C.create(abs(A.rows - B.rows) + 1, abs(A.cols - B.cols) + 1, A.type()); 
    Size dftSize; 
    // compute the size of DFT transform 
    dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1); 
    dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1); 
    // allocate temporary buffers and initialize them with 0's 
    Mat tempA(dftSize, A.type(), Scalar::all(0)); 
    Mat tempB(dftSize, B.type(), Scalar::all(0)); 
    // copy A and B to the top-left corners of tempA and tempB, respectively 
    Mat roiA(tempA, Rect(0, 0, A.cols, A.rows)); 
    A.copyTo(roiA); 
    Mat roiB(tempB, Rect(0, 0, B.cols, B.rows)); 
    B.copyTo(roiB); 
    // now transform the padded A & B in-place; 
    // use "nonzeroRows" hint for faster processing 
    dft(tempA, tempA, 0, A.rows); 

    dft(tempB, tempB, 0, A.rows); 

    // multiply the spectrums; 
    // the function handles packed spectrum representations well 
    mulSpectrums(tempA, tempB, tempA, 0); 
    // transform the product back from the frequency domain. 
    // Even though all the result rows will be non-zero, 
    // you need only the first C.rows of them, and thus you 
    // pass nonzeroRows == C.rows 

    dft(tempA, tempA, DFT_INVERSE + DFT_SCALE); 
    // now copy the result back to C. 
    C = tempA(Rect((dftSize.width - A.cols)/2, (dftSize.height - A.rows)/2, A.cols, A.rows)).clone(); 
    // all the temporary buffers will be deallocated automatically 
} 

//---------------------------------------------------------- 
// Compute Re and Im planes of FFT from Image 
//---------------------------------------------------------- 
void ForwardFFT(Mat &Src, Mat *FImg) 
{ 
    int M = getOptimalDFTSize(Src.rows); 
    int N = getOptimalDFTSize(Src.cols); 
    Mat padded; 
    copyMakeBorder(Src, padded, 0, M - Src.rows, 0, N - Src.cols, BORDER_CONSTANT, Scalar::all(0)); 
    Mat planes[] = { Mat_<double>(padded), Mat::zeros(padded.size(), CV_64FC1) }; 
    Mat complexImg; 
    merge(planes, 2, complexImg); 
    dft(complexImg, complexImg); 
    split(complexImg, planes); 
    // crop result 
    planes[0] = planes[0](Rect(0, 0, Src.cols, Src.rows)); 
    planes[1] = planes[1](Rect(0, 0, Src.cols, Src.rows)); 
    FImg[0] = planes[0].clone(); 
    FImg[1] = planes[1].clone(); 
} 
//---------------------------------------------------------- 
// Compute image from Re and Im parts of FFT 
//---------------------------------------------------------- 
void InverseFFT(Mat *FImg, Mat &Dst) 
{ 
    Mat complexImg; 
    merge(FImg, 2, complexImg); 
    dft(complexImg, complexImg, DFT_INVERSE + DFT_SCALE); 
    split(complexImg, FImg); 
    Dst = FImg[0]; 
} 
//---------------------------------------------------------- 
// wiener Filter 
//---------------------------------------------------------- 
void wienerFilter(Mat &src, Mat &dst, Mat &_h, double k) 
{ 
    //--------------------------------------------------- 
    // Small epsilon to avoid division by zero 
    //--------------------------------------------------- 
    const double eps = 1E-8; 
    //--------------------------------------------------- 
    int ImgW = src.size().width; 
    int ImgH = src.size().height; 
    //-------------------------------------------------- 
    Mat Yf[2]; 
    ForwardFFT(src, Yf); 
    //-------------------------------------------------- 
    Mat h = Mat::zeros(ImgH, ImgW, CV_64FC1); 

    int padx = h.cols - _h.cols; 
    int pady = h.rows - _h.rows; 

    copyMakeBorder(_h, h, pady/2, pady - pady/2, padx/2, padx - padx/2, BORDER_CONSTANT, Scalar::all(0)); 

    Mat Hf[2]; 
    ForwardFFT(h, Hf); 


    //-------------------------------------------------- 
    Mat Fu[2]; 
    Fu[0] = Mat::zeros(ImgH, ImgW, CV_64FC1); 
    Fu[1] = Mat::zeros(ImgH, ImgW, CV_64FC1); 

    complex<double> a; 
    complex<double> b; 
    complex<double> c; 

    double Hf_Re; 
    double Hf_Im; 
    double Phf; 
    double hfz; 
    double hz; 
    double A; 

    for (int i = 0; i < h.rows; i++) 
    { 
     for (int j = 0; j < h.cols; j++) 
     { 
      Hf_Re = Hf[0].at<double>(i, j); 
      Hf_Im = Hf[1].at<double>(i, j); 
      Phf = Hf_Re*Hf_Re + Hf_Im*Hf_Im; 
      hfz = (Phf < eps)*eps; 
      hz = (h.at<double>(i, j) > 0); 
      A = Phf/(Phf + hz + k); 
      a = complex<double>(Yf[0].at<double>(i, j), Yf[1].at<double>(i, j)); 
      b = complex<double>(Hf_Re + hfz, Hf_Im + hfz); 
      c = a/b; // Deconvolution :) other work to avoid division by zero 
      Fu[0].at<double>(i, j) = (c.real()*A); 
      Fu[1].at<double>(i, j) = (c.imag()*A); 
     } 
    } 
    InverseFFT(Fu, dst); 
    Recomb(dst, dst); 
} 

// --------------------------------- 
// 
// --------------------------------- 

int main(int argc, char** argv) 
{ 
    namedWindow("Image"); 
    namedWindow("Kernel"); 
    namedWindow("Result"); 
    Mat Img = imread("F:\\ImagesForTest\\lena.jpg", 0); // Source image 
    Img.convertTo(Img, CV_32FC1, 1.0/255.0); 
    Mat kernel = imread("F:\\ImagesForTest\\Point.jpg", 0); // PSF 
    //resize(kernel, kernel, Size(), 0.5, 0.5); 
    kernel.convertTo(kernel, CV_32FC1, 1.0/255.0); 
    float kernel_sum = cv::sum(kernel)[0]; 
    kernel /= kernel_sum; 

    int width = Img.cols; 
    int height = Img.rows; 
    Mat resim; 
    convolveDFT(Img, kernel, resim); 
    Mat resim2; 
    kernel.convertTo(kernel, CV_64FC1); 
    // Apply filter 
    wienerFilter(resim, resim2, kernel, 0.01); 
    imshow("Результат фильтрации", resim2); 
    imshow("Kernel", kernel * 255); 
    imshow("Image", Img); 
    imshow("Result", resim); 
    cvWaitKey(0); 
} 

結果は次のようになります。 enter image description here

関連する問題