2017-02-23 10 views
-1

LPCXpresso 1769に接続されたDIPスイッチを介してさまざまな機能を使用するCプログラムを作成しようとしています。実行する機能を選択する必要があります(たとえば、00バイナリカウンタ01回転LEDなど) 。さて、私はすでに作っていますが、入れ子のif文からswitch文まで実行するプログラムを選択する関数を変更したかったが、うまくいきませんでした。しかし、コンパイルすると、デバッガはLPCXpressoに点滅し、それが行っていない各タスクの組み合わせを選択した後で、いくつかの警告(123行目と132行目も '未使用パラメータpvParameter'ものをしないでください。 NXPのLPCXpresso IDEを使用しています。CスイッチステートメントCMSIS FreeRTOS

は、ここでは、コード

#include <string.h> 
#include "FreeRTOS.h" 
#include "task.h" 
#ifdef __USE_CMSIS 
#include "LPC17xx.h" 
#endif 

#include <cr_section_macros.h> 
#include <NXP/crp.h> 
#include "lpc17xx_gpio.h" 
#include "lpc17xx_timer.h" 
#include "lpc17xx_adc.h" 
#include "lpc17xx_pinsel.h" 
/* Library includes. */ 
#include "LPC17xx.h" 
#include "LPC17xx_gpio.h" 
#include "system_LPC17xx.h" 



/* Used as a loop counter to create a very crude delay. */ 
IRQn_Type TIMER0; 
__CRP const unsigned int CRP_WORD = CRP_NO_CRP ; 
/* Used in the run time stats calculations. */ 
/* Used in the run time stats calculations. */ 
static uint32_t ulClocksPer10thOfAMilliSecond = 0UL; 
#define mainDELAY_LOOP_COUNT (0xfffff) 
void CONFIG_GPIO(void); 

static void init_adc(void); 
extern int Timer0_Wait(); 

#define RGB_RED 0x01000000 
#define RGB_BLUE 0x02000000 
#define RGB_GREEN 0x04000000 
void init_rgb (void); 
void counter_rgb (void); 

void vTaskKit(void *pvParameters); 

int main(void) 
{ 
    init_adc(); 
    init_rgb(); 
    CONFIG_GPIO(); 

    xTaskCreate (vTaskKit, "Kit", 240, NULL, 1, NULL); 
    /* Start the FreeRTOS scheduler. */ 
    vTaskStartScheduler(); 

    /* The following line should never execute. If it does, it means there was 
insufficient FreeRTOS heap memory available to create the Idle and/or timer 
tasks. See the memory management section on the http://www.FreeRTOS.org web 
site for more information. */ 
for(;;); 
} 


/*-----------------------------------------------------------*/ 


void CONFIG_GPIO(void) 
      { 
       GPIO_SetDir(0,0x000000FF, 1); 
       GPIO_ClearValue(0, 0x000000FF); 
       GPIO_SetDir(2,0x000000FF,0); 
       GPIO_ClearValue(2, 0x000000FF); 
      } 
void init_rgb (void) 
      { 
       GPIO_SetDir (0,0x01000000, 1); 
       GPIO_SetDir (0,0x02000000, 1); 
       GPIO_SetDir (0,0x04000000, 1); 
      } 
static void init_adc(void) 
{ 

/* 
* Init ADC pin connect 
* AD0.0 on P0.23 
*/ 
PINSEL_CFG_Type PinCfg; 
PinCfg.Funcnum = 1; 
PinCfg.OpenDrain = 0; 
PinCfg.Pinmode = 0; 
PinCfg.Pinnum = 23; 
PinCfg.Portnum = 0; 
PINSEL_ConfigPin(&PinCfg); 

/* Configuration for ADC : 
* Frequency at 1Mhz 
* ADC channel 0, no Interrupt 
*/ 
ADC_Init(LPC_ADC, 100000); 
ADC_IntConfig(LPC_ADC,ADC_ADINTEN0,ENABLE); 
ADC_ChannelCmd(LPC_ADC,ADC_CHANNEL_0,ENABLE); 
ADC_EdgeStartConfig(LPC_ADC,ADC_START_ON_FALLING); 
} 

void vTaskKit(void *pvParameters) 
{ 
volatile unsigned long ul; 

uint32_t var1=0x00000001; 
uint32_t del =0x000000FF; 
uint32_t var2=0x00000001; 
uint32_t analog = 0; 
uint32_t sw=0x00000000; 
unsigned int var=0; 
while(1) 
{ 
    sw=GPIO_ReadValue(2); 
    switch(sw) 
    { 
     case 0x00000001://Contador Binario 
      GPIO_SetValue(0,var); 
      var++; 
      vTaskDelay(100); 
      GPIO_ClearValue(0,0x000000FF); 
      break; 

     case 0x00000002://Auto Increible 
      for(var2;var2<=7;var2++) 
      { 
       GPIO_SetValue(0,var1); 
       var1= var1<<1; 
       for (ul =0; ul < mainDELAY_LOOP_COUNT; ul++) 
       { 
       } 
       GPIO_ClearValue(0,del); 
      } 
      for(var2;var2>=2;var2--) 
      { 
       GPIO_SetValue(0,var1); 
       var1= var1>>1; 
       for (ul =0; ul < mainDELAY_LOOP_COUNT; ul++) 
       { 
       } 
       GPIO_ClearValue(0,del); 
      } 
      break; 

     case 0x00000003://Contador RGB 
      GPIO_SetValue (0,RGB_RED); 
      vTaskDelay(200/portTICK_RATE_MS); 

      GPIO_ClearValue (0,RGB_RED); 
      GPIO_SetValue (0,RGB_BLUE); 
      vTaskDelay(200/portTICK_RATE_MS); 

      GPIO_ClearValue (0,RGB_BLUE); 
      GPIO_SetValue (0,(RGB_RED+RGB_BLUE)); 
      vTaskDelay(200/portTICK_RATE_MS); 

      GPIO_ClearValue (0,(RGB_RED+RGB_BLUE)); 
      GPIO_SetValue (0,RGB_GREEN); 
      vTaskDelay(200/portTICK_RATE_MS); 

      GPIO_ClearValue (0,RGB_GREEN); 
      GPIO_SetValue (0,RGB_GREEN+RGB_RED); 
      vTaskDelay(200/portTICK_RATE_MS); 

      GPIO_ClearValue (0,RGB_GREEN+RGB_RED); 
      GPIO_SetValue (0,RGB_GREEN+RGB_BLUE); 
      vTaskDelay(200/portTICK_RATE_MS); 

      GPIO_ClearValue (0,RGB_GREEN+RGB_BLUE); 
      GPIO_SetValue (0,RGB_GREEN+RGB_BLUE+RGB_RED); 
      vTaskDelay(200/portTICK_RATE_MS); 

      GPIO_ClearValue (0,RGB_GREEN+RGB_BLUE+RGB_RED); 
      vTaskDelay(200/portTICK_RATE_MS); 
      break; 

     case 0x00000004://Contador ADC Binario 
      ADC_StartCmd(LPC_ADC,ADC_START_NOW); 
      analog=ADC_ChannelGetData(LPC_ADC,ADC_CHANNEL_0); 
      analog=analog/16; 
      GPIO_SetValue(0,analog); 
      vTaskDelay(100/portTICK_RATE_MS); 

      GPIO_ClearValue(0,0x000000FF); 
      break; 

     case 0x00000005://Contador ADC RGB 
      ADC_StartCmd(LPC_ADC,ADC_START_NOW); 
      analog=ADC_ChannelGetData(LPC_ADC,ADC_CHANNEL_0); 
      if(analog<585) 
      { 
       GPIO_SetValue(0,RGB_RED); 
       vTaskDelay(50/portTICK_RATE_MS); 
       GPIO_ClearValue (0,RGB_RED); 
      } 
      if(585<analog && analog<1170) 
      { 
       GPIO_SetValue (0,RGB_BLUE); 
       vTaskDelay(50/portTICK_RATE_MS); 
       GPIO_ClearValue (0,RGB_BLUE); 
      } 
      if(1170<analog && analog<1755) 
      { 
       GPIO_SetValue (0,(RGB_RED+RGB_BLUE)); 
       vTaskDelay(50/portTICK_RATE_MS); 
       GPIO_ClearValue (0,(RGB_RED+RGB_BLUE)); 
      } 
      if(1755<analog && analog<2340) 
      { 
       GPIO_SetValue (0,RGB_GREEN); 
       vTaskDelay(50/portTICK_RATE_MS); 
       GPIO_ClearValue (0,RGB_GREEN); 
      } 
      if(2340<analog && analog<2925) 
      { 
       GPIO_SetValue (0,RGB_GREEN+RGB_RED); 
       vTaskDelay(50/portTICK_RATE_MS); 
       GPIO_ClearValue (0,RGB_GREEN+RGB_RED); 
      } 
      if(2925<analog && analog<3510) 
      { 
       GPIO_SetValue (0,RGB_GREEN+RGB_BLUE); 
       vTaskDelay(50/portTICK_RATE_MS); 
       GPIO_ClearValue (0,RGB_GREEN+RGB_BLUE); 
      } 
      if(3510<analog && analog<4095) 
      { 
       GPIO_SetValue (0,RGB_GREEN+RGB_BLUE+RGB_RED); 
       vTaskDelay(50/portTICK_RATE_MS); 
       GPIO_ClearValue (0,RGB_GREEN+RGB_BLUE+RGB_RED); 
      } 
      break; 
    } 
} 
} 















void vMainConfigureTimerForRunTimeStats(void) 
{ 
/* How many clocks are there per tenth of a millisecond? */ 
ulClocksPer10thOfAMilliSecond = configCPU_CLOCK_HZ/10000UL; 
} 
/*-----------------------------------------------------------*/ 

uint32_t ulMainGetRunTimeCounterValue(void) 
{ 
uint32_t ulSysTickCounts, ulTickCount, ulReturn; 
const uint32_t ulSysTickReloadValue = (configCPU_CLOCK_HZ/ configTICK_RATE_HZ) - 1UL; 
volatile uint32_t * const pulCurrentSysTickCount = ((volatile uint32_t *) 0xe000e018); 
volatile uint32_t * const pulInterruptCTRLState = ((volatile uint32_t *) 0xe000ed04); 
const uint32_t ulSysTickPendingBit = 0x04000000UL; 

/* NOTE: There are potentially race conditions here. However, it is used 
anyway to keep the examples simple, and to avoid reliance on a separate 
timer peripheral. */ 


/* The SysTick is a down counter. How many clocks have passed since it was 
last reloaded? */ 
ulSysTickCounts = ulSysTickReloadValue - *pulCurrentSysTickCount; 

/* How many times has it overflowed? */ 
ulTickCount = xTaskGetTickCountFromISR(); 

/* Is there a SysTick interrupt pending? */ 
if((*pulInterruptCTRLState & ulSysTickPendingBit) != 0UL) 
{ 
    /* There is a SysTick interrupt pending, so the SysTick has overflowed 
    but the tick count not yet incremented. */ 
    ulTickCount++; 

    /* Read the SysTick again, as the overflow might have occurred since 
    it was read last. */ 
    ulSysTickCounts = ulSysTickReloadValue - *pulCurrentSysTickCount; 
} 

/* Convert the tick count into tenths of a millisecond. THIS ASSUMES 
configTICK_RATE_HZ is 1000! */ 
ulReturn = (ulTickCount * 10UL) ; 

/* Add on the number of tenths of a millisecond that have passed since the 
tick count last got updated. */ 
ulReturn += (ulSysTickCounts/ulClocksPer10thOfAMilliSecond); 

return ulReturn; 
} 
/*-----------------------------------------------------------*/ 

void vApplicationStackOverflowHook(xTaskHandle pxTask, signed char *pcTaskName) 
{ 
(void) pcTaskName; 
(void) pxTask; 

/* Run time stack overflow checking is performed if 
configCHECK_FOR_STACK_OVERFLOW is defined to 1 or 2. This hook 
function is called if a stack overflow is detected. */ 
taskDISABLE_INTERRUPTS(); 
for(;;); 
} 
/*-----------------------------------------------------------*/ 

void vApplicationMallocFailedHook(void) 
{ 
/* vApplicationMallocFailedHook() will only be called if 
configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h. It is a hook 
function that will get called if a call to pvPortMalloc() fails. 
pvPortMalloc() is called internally by the kernel whenever a task, queue, 
timer or semaphore is created. It is also called by various parts of the 
demo application. If heap_1.c or heap_2.c are used, then the size of the 
heap available to pvPortMalloc() is defined by configTOTAL_HEAP_SIZE in 
FreeRTOSConfig.h, and the xPortGetFreeHeapSize() API function can be used 
to query the size of free heap space that remains (although it does not 
provide information on how the remaining heap might be fragmented). */ 
taskDISABLE_INTERRUPTS(); 
for(;;); 

} 
/*-----------------------------------------------------------*/ 

そして働く一つだが、入れ子になったと

#include <string.h> 
#include "FreeRTOS.h" 
#include "task.h" 
#ifdef __USE_CMSIS 
#include "LPC17xx.h" 
#endif 

#include <cr_section_macros.h> 
#include <NXP/crp.h> 
#include "lpc17xx_gpio.h" 
#include "lpc17xx_timer.h" 
#include "lpc17xx_adc.h" 
#include "lpc17xx_pinsel.h" 
/* Library includes. */ 
#include "LPC17xx.h" 
#include "LPC17xx_gpio.h" 
#include "system_LPC17xx.h" 



/* Used as a loop counter to create a very crude delay. */ 
IRQn_Type TIMER0; 
__CRP const unsigned int CRP_WORD = CRP_NO_CRP ; 
/* Used in the run time stats calculations. */ 
/* Used in the run time stats calculations. */ 
static uint32_t ulClocksPer10thOfAMilliSecond = 0UL; 
#define mainDELAY_LOOP_COUNT (0xfffff) 
void CONFIG_GPIO(void); 

static void init_adc(void); 
extern int Timer0_Wait(); 

#define RGB_RED 0x01000000 
#define RGB_BLUE 0x02000000 
#define RGB_GREEN 0x04000000 
void init_rgb (void); 
void counter_rgb (void); 

void vTaskKit(void *pvParameters); 

int main(void) 
{ 
init_adc(); 
init_rgb(); 
CONFIG_GPIO(); 

xTaskCreate (vTaskKit, "Kit", 240, NULL, 1, NULL); 
/* Start the FreeRTOS scheduler. */ 
vTaskStartScheduler(); 

/* The following line should never execute. If it does, it means there was 
insufficient FreeRTOS heap memory available to create the Idle and/or timer 
tasks. See the memory management section on the http://www.FreeRTOS.org web 
site for more information. */ 
for(;;); 
} 


/*-----------------------------------------------------------*/ 


void CONFIG_GPIO(void) 
      { 
       GPIO_SetDir(0,0x000000FF, 1); 
       GPIO_ClearValue(0, 0x000000FF); 
       GPIO_SetDir(2,0x000000FF,0); 
       GPIO_ClearValue(2, 0x000000FF); 
      } 
void init_rgb (void) 
      { 
       GPIO_SetDir (0,0x01000000, 1); 
       GPIO_SetDir (0,0x02000000, 1); 
       GPIO_SetDir (0,0x04000000, 1); 
      } 
static void init_adc(void) 
{ 

/* 
* Init ADC pin connect 
* AD0.0 on P0.23 
*/ 
PINSEL_CFG_Type PinCfg; 
PinCfg.Funcnum = 1; 
PinCfg.OpenDrain = 0; 
PinCfg.Pinmode = 0; 
PinCfg.Pinnum = 23; 
PinCfg.Portnum = 0; 
PINSEL_ConfigPin(&PinCfg); 

/* Configuration for ADC : 
* Frequency at 1Mhz 
* ADC channel 0, no Interrupt 
*/ 
ADC_Init(LPC_ADC, 100000); 
ADC_IntConfig(LPC_ADC,ADC_ADINTEN0,ENABLE); 
ADC_ChannelCmd(LPC_ADC,ADC_CHANNEL_0,ENABLE); 
ADC_EdgeStartConfig(LPC_ADC,ADC_START_ON_FALLING); 
} 

void vTaskKit(void *pvParameters) 
{ 
volatile unsigned long ul; 

uint32_t var1=0x00000001; 
uint32_t del =0x000000FF; 
uint32_t var2=0x00000001; 
uint32_t analog = 0; 
char var=0; 
char sw=0x000000000; 
char bin=0x00000001; 
char inc=0x00000002; 
char rgb=0x00000003; 
char adcbin=0x00000004; 
char adcrgb=0x00000005; 

    while(1) 
    { 

     sw=GPIO_ReadValue(2); 
     if(sw==bin) 
     { 
        GPIO_SetValue(0,var); 
        var++; 
        vTaskDelay(100); 
        GPIO_ClearValue(0,0x000000FF); 




     } 


     if(sw==inc) 
     { 
     for(var2;var2<=7;var2++) 
       { 
        GPIO_SetValue(0,var1); 
        var1= var1<<1; 
        for (ul =0; ul < mainDELAY_LOOP_COUNT; ul++) 
         { 
         } 

        GPIO_ClearValue(0,del); 
       } 

       for(var2;var2>=2;var2--) 
       { 
        GPIO_SetValue(0,var1); 
        var1= var1>>1; 
        for (ul =0; ul < mainDELAY_LOOP_COUNT; ul++) 

        { 
        } 
        GPIO_ClearValue(0,del); 

         } 
        } 
     if(sw==rgb) 
     { 
      GPIO_SetValue (0,RGB_RED); 
      vTaskDelay(200/portTICK_RATE_MS); 

      GPIO_ClearValue (0,RGB_RED); 
      GPIO_SetValue (0,RGB_BLUE); 
      vTaskDelay(200/portTICK_RATE_MS); 

      GPIO_ClearValue (0,RGB_BLUE); 
      GPIO_SetValue (0,(RGB_RED+RGB_BLUE)); 
      vTaskDelay(200/portTICK_RATE_MS); 

      GPIO_ClearValue (0,(RGB_RED+RGB_BLUE)); 
      GPIO_SetValue (0,RGB_GREEN); 
      vTaskDelay(200/portTICK_RATE_MS); 

      GPIO_ClearValue (0,RGB_GREEN); 
      GPIO_SetValue (0,RGB_GREEN+RGB_RED); 
      vTaskDelay(200/portTICK_RATE_MS); 

      GPIO_ClearValue (0,RGB_GREEN+RGB_RED); 
      GPIO_SetValue (0,RGB_GREEN+RGB_BLUE); 
      vTaskDelay(200/portTICK_RATE_MS); 

      GPIO_ClearValue (0,RGB_GREEN+RGB_BLUE); 
      GPIO_SetValue (0,RGB_GREEN+RGB_BLUE+RGB_RED); 
      vTaskDelay(200/portTICK_RATE_MS); 

      GPIO_ClearValue (0,RGB_GREEN+RGB_BLUE+RGB_RED); 
      vTaskDelay(200/portTICK_RATE_MS); 


      } 

     if(sw==adcbin) 
        { 
         ADC_StartCmd(LPC_ADC,ADC_START_NOW); 
         analog=ADC_ChannelGetData(LPC_ADC,ADC_CHANNEL_0); 
         analog=analog/16; 
         GPIO_SetValue(0,analog); 
         vTaskDelay(100/portTICK_RATE_MS); 

         GPIO_ClearValue(0,0x000000FF); 


        } 
     if(sw==adcrgb) 
        { 
      ADC_StartCmd(LPC_ADC,ADC_START_NOW); 
      analog=ADC_ChannelGetData(LPC_ADC,ADC_CHANNEL_0); 
      if(analog<585) 
      { 
      GPIO_SetValue(0,RGB_RED); 
      vTaskDelay(50/portTICK_RATE_MS); 
      GPIO_ClearValue (0,RGB_RED); 
      } 
      if(585<analog && analog<1170) 
      { 
      GPIO_SetValue (0,RGB_BLUE); 
      vTaskDelay(50/portTICK_RATE_MS); 
      GPIO_ClearValue (0,RGB_BLUE); 
      } 
      if(1170<analog && analog<1755) 
      { 
      GPIO_SetValue (0,(RGB_RED+RGB_BLUE)); 
      vTaskDelay(50/portTICK_RATE_MS); 
      GPIO_ClearValue (0,(RGB_RED+RGB_BLUE)); 
      } 
      if(1755<analog && analog<2340) 
      { 
      GPIO_SetValue (0,RGB_GREEN); 
      vTaskDelay(50/portTICK_RATE_MS); 
      GPIO_ClearValue (0,RGB_GREEN); 
      } 
      if(2340<analog && analog<2925) 
      { 
      GPIO_SetValue (0,RGB_GREEN+RGB_RED); 
      vTaskDelay(50/portTICK_RATE_MS); 
      GPIO_ClearValue (0,RGB_GREEN+RGB_RED); 
      } 
      if(2925<analog && analog<3510) 
      { 
      GPIO_SetValue (0,RGB_GREEN+RGB_BLUE); 
      vTaskDelay(50/portTICK_RATE_MS); 
      GPIO_ClearValue (0,RGB_GREEN+RGB_BLUE); 
      } 
      if(3510<analog && analog<4095) 
      { 
      GPIO_SetValue 
      (0,RGB_GREEN+RGB_BLUE+RGB_RED); 

      vTaskDelay(50/portTICK_RATE_MS); 

      GPIO_ClearValue 

      (0,RGB_GREEN+RGB_BLUE+RGB_RED); 

      } 


        } 
        } 
        } 















void vMainConfigureTimerForRunTimeStats(void) 
{ 
/* How many clocks are there per tenth of a millisecond? */ 
ulClocksPer10thOfAMilliSecond = configCPU_CLOCK_HZ/10000UL; 
} 
/*-----------------------------------------------------------*/ 

uint32_t ulMainGetRunTimeCounterValue(void) 
{ 
uint32_t ulSysTickCounts, ulTickCount, ulReturn; 
const uint32_t ulSysTickReloadValue = (configCPU_CLOCK_HZ/ configTICK_RATE_HZ) - 1UL; 
volatile uint32_t * const pulCurrentSysTickCount = ((volatile uint32_t *) 0xe000e018); 
volatile uint32_t * const pulInterruptCTRLState = ((volatile uint32_t *) 0xe000ed04); 
const uint32_t ulSysTickPendingBit = 0x04000000UL; 

/* NOTE: There are potentially race conditions here. However, it is used 
anyway to keep the examples simple, and to avoid reliance on a separate 
timer peripheral. */ 


/* The SysTick is a down counter. How many clocks have passed since it was 
last reloaded? */ 
ulSysTickCounts = ulSysTickReloadValue - *pulCurrentSysTickCount; 

/* How many times has it overflowed? */ 
ulTickCount = xTaskGetTickCountFromISR(); 

/* Is there a SysTick interrupt pending? */ 
if((*pulInterruptCTRLState & ulSysTickPendingBit) != 0UL) 
{ 
    /* There is a SysTick interrupt pending, so the SysTick has overflowed 
    but the tick count not yet incremented. */ 
    ulTickCount++; 

    /* Read the SysTick again, as the overflow might have occurred since 
    it was read last. */ 
    ulSysTickCounts = ulSysTickReloadValue - *pulCurrentSysTickCount; 
} 

/* Convert the tick count into tenths of a millisecond. THIS ASSUMES 
configTICK_RATE_HZ is 1000! */ 
ulReturn = (ulTickCount * 10UL) ; 

/* Add on the number of tenths of a millisecond that have passed since the 
tick count last got updated. */ 
ulReturn += (ulSysTickCounts/ulClocksPer10thOfAMilliSecond); 

return ulReturn; 
} 
/*-----------------------------------------------------------*/ 

void vApplicationStackOverflowHook(xTaskHandle pxTask, signed char *pcTaskName) 
{ 
(void) pcTaskName; 
(void) pxTask; 

/* Run time stack overflow checking is performed if 
configCHECK_FOR_STACK_OVERFLOW is defined to 1 or 2. This hook 
function is called if a stack overflow is detected. */ 
taskDISABLE_INTERRUPTS(); 
for(;;); 
} 
/*-----------------------------------------------------------*/ 

void vApplicationMallocFailedHook(void) 
{ 
/* vApplicationMallocFailedHook() will only be called if 
configUSE_MALLOC_FAILED_HOOK is set to 1 in FreeRTOSConfig.h. It is a hook 
function that will get called if a call to pvPortMalloc() fails. 
pvPortMalloc() is called internally by the kernel whenever a task, queue, 
timer or semaphore is created. It is also called by various parts of the 
demo application. If heap_1.c or heap_2.c are used, then the size of the 
heap available to pvPortMalloc() is defined by configTOTAL_HEAP_SIZE in 
FreeRTOSConfig.h, and the xPortGetFreeHeapSize() API function can be used 
to query the size of free heap space that remains (although it does not 
provide information on how the remaining heap might be fragmented). */ 
taskDISABLE_INTERRUPTS(); 
for(;;); 

} 
/*-----------------------------------------------------------*/ 
+2

ようこそStackOverflow!ヘルプセンターにアクセスし、良い質問を投稿する方法に関するガイドラインを読んでください。なぜなら、あなたにはたくさんのコードが掲載されているためです。尋ねられる質問は、可能な限り明確かつ簡潔でなければならず、質問に最も関連性の高いコードのみを投稿することを忘れないでください。ありがとうございました。 –

+0

デバッガでコードをステップ実行しましたか? switch文を入力するときに 'sw'の値は何ですか? 'GPIO_ReadValue()'はどのような型を返しますか?なぜあなたはswの型を変えたのですか? – kkrambo

+0

これらのメッセージはデバッガからのものではありません。そして、私たちはコードの壁のためのデバッグサービスはありません。 – Olaf

答えて

1

のRef未使用のパラメータの警告だ場合:FreeRTOS tasksは同じプロトタイプを持っている必要があります実装する機能、およびプロトタイプは、パラメータ。ただし、実際にはすべてのタスクでこのパラメータを使用する必要はありませんが、このパラメータを使用しないとコンパイラは警告を生成します。警告は問題ありません。パラメータを削除することで修正できないため、コンパイラを静かに保つために、次のコードをタスクに追加するだけで、パラメータの読み込みを無効にしてください。

/*未使用のパラメータ*/ (void)pvParameters;私はライン123

0

GPIO_ReadValue(あるかわからないように、ライン123上の効果なしと

参考文はコメントすることはできません)のuint32_tの型を返します。作業プログラムでは、戻り値は8ビットのchar型に割り当てられます。つまり、最上位24ビットがマスクされて無視されます。値の最下位8ビットのみが後続のif比較文で使用されます。

非動作プログラムでは、GPIO_ReadValue()の戻り値が32ビット値に割り当てられます。最も重要な24ビットはマスクされません。すべての32ビットは、switch文の大文字と小文字を判別するために使用されます。ケース値は、最上位24ビットがすべてゼロであると仮定します。しかし、最も重要な24ビットのいずれかが非ゼロの場合、case文のどれもが値と一致しません。おそらく、このような最も重要な24ビットをマスクする必要があります。

sw = (GPIO_ReadValue(2) & 0x000000FF); 
switch(sw) 
関連する問題