私の入力は、形状が(1, 893, 463)
、より一般的には(None, None, 463)
です。これは893個のタイムステップの1サンプルに対応し、それぞれ463個のフィーチャがあります。出力形状は(1, 893, 2)
、すなわち(None, None, 2)
です。KerasのConvolutional1Dは、機能の代わりに時間ステップで畳み込まれていますか?
マイネットワーク構造は、次のようになります。このようにコンパイルされた
model = Sequential()
model.add(Convolution1D(64, 5, input_dim = one_input_length, border_mode = "same", W_regularizer = l2(0.01)))
model.add(MaxPooling1D(10, border_mode = "same"))
model.add(Convolution1D(64, 5, border_mode = "same", W_regularizer = l2(0.01)))
model.add(MaxPooling1D(10, border_mode = "same"))
model.add(GRU(300, return_sequences = True, W_regularizer = l2(0.01), U_regularizer = l2(0.01)))
model.add(TimeDistributed(Dense(2, activation='sigmoid')))
:compile
に遡っ、Incompatible shapes: [1,893] vs. [1,9]
:
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
問題は、私はmodel.fit(test_X, test_Y, nb_epochs = ....)
を行うときに、私は次のエラーを取得する、ありますライン。
Iこれを考え出すthis技術を用いて、各層の出力の形状を記録した:
Input: (1, 893, 463)
Conv_1: (1, 893, 64)
Pool_1: (1, 90, 64)
Conv_2: (1, 90, 64)
Pool_2: (1, 9, 64)
GRU: (1, 9, 300)
Dense: (1, 9, 2)
Iモデルは、精度を計算しようとし、そして正しい893のためにそれを見つけたときにこれが発生した疑い出力には、9つの予測しかありません。なんらかの理由で、第2のConvolutional1D
レイヤーは、最初のレイヤーと同じように、フィーチャーではなく時間ステップで畳み込みを開始します。
これはなぜですか、これを修正するにはどうすればよいですか?
EDIT:
モデルの要約:私はCNN-LSTM分類器を作成しようとしています
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
convolution1d_1 (Convolution1D) (None, None, 64) 148224 convolution1d_input_1[0][0]
____________________________________________________________________________________________________
maxpooling1d_1 (MaxPooling1D) (None, None, 64) 0 convolution1d_1[0][0]
____________________________________________________________________________________________________
convolution1d_2 (Convolution1D) (None, None, 64) 20544 maxpooling1d_1[0][0]
____________________________________________________________________________________________________
maxpooling1d_2 (MaxPooling1D) (None, None, 64) 0 convolution1d_2[0][0]
____________________________________________________________________________________________________
gru_1 (GRU) (None, None, 300) 328500 maxpooling1d_2[0][0]
____________________________________________________________________________________________________
timedistributed_1 (TimeDistribut (None, None, 2) 602 gru_1[0][0]
====================================================================================================
Total params: 497,870
Trainable params: 497,870
Non-trainable params: 0
____________________________________________________________________________________________________
、時系列データ与えられ、各時間ステップのための出力が得られます。
完全なエラーメッセージ:
Traceback (most recent call last):
File "/Users/user/.pyenvs/MLPy3/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1021, in _do_call
return fn(*args)
File "/Users/user/.pyenvs/MLPy3/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1003, in _run_fn
status, run_metadata)
File "/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/contextlib.py", line 66, in __exit__
next(self.gen)
File "/Users/user/.pyenvs/MLPy3/lib/python3.5/site-packages/tensorflow/python/framework/errors_impl.py", line 469, in raise_exception_on_not_ok_status
pywrap_tensorflow.TF_GetCode(status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [1,893] vs. [1,9]
[[Node: Equal = Equal[T=DT_INT64, _device="/job:localhost/replica:0/task:0/cpu:0"](ArgMax, ArgMax_1)]]
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "Stock_CNN_LSTM.py", line 89, in <module>
model.fit(test_X, test_Y, nb_epoch=nb_epoch, verbose = 2, callbacks=[TestCallback((test_X, test_Y)), ModelCheckpoint("cnn_lstm_model-{epoch:02d}.h5")], initial_epoch = initial_epoch)
File "/Users/user/.pyenvs/MLPy3/lib/python3.5/site-packages/keras/models.py", line 672, in fit
initial_epoch=initial_epoch)
File "/Users/user/.pyenvs/MLPy3/lib/python3.5/site-packages/keras/engine/training.py", line 1192, in fit
initial_epoch=initial_epoch)
File "/Users/user/.pyenvs/MLPy3/lib/python3.5/site-packages/keras/engine/training.py", line 892, in _fit_loop
outs = f(ins_batch)
File "/Users/user/.pyenvs/MLPy3/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py", line 1900, in __call__
feed_dict=feed_dict)
File "/Users/user/.pyenvs/MLPy3/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 766, in run
run_metadata_ptr)
File "/Users/user/.pyenvs/MLPy3/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 964, in _run
feed_dict_string, options, run_metadata)
File "/Users/user/.pyenvs/MLPy3/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1014, in _do_run
target_list, options, run_metadata)
File "/Users/user/.pyenvs/MLPy3/lib/python3.5/site-packages/tensorflow/python/client/session.py", line 1034, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Incompatible shapes: [1,893] vs. [1,9]
[[Node: Equal = Equal[T=DT_INT64, _device="/job:localhost/replica:0/task:0/cpu:0"](ArgMax, ArgMax_1)]]
Caused by op 'Equal', defined at:
File "Stock_CNN_LSTM.py", line 71, in <module>
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
File "/Users/user/.pyenvs/MLPy3/lib/python3.5/site-packages/keras/models.py", line 594, in compile
**kwargs)
File "/Users/user/.pyenvs/MLPy3/lib/python3.5/site-packages/keras/engine/training.py", line 713, in compile
append_metric(i, 'acc', acc_fn(y_true, y_pred))
File "/Users/user/.pyenvs/MLPy3/lib/python3.5/site-packages/keras/metrics.py", line 11, in categorical_accuracy
K.argmax(y_pred, axis=-1)))
File "/Users/user/.pyenvs/MLPy3/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py", line 1275, in equal
return tf.equal(x, y)
File "/Users/user/.pyenvs/MLPy3/lib/python3.5/site-packages/tensorflow/python/ops/gen_math_ops.py", line 728, in equal
result = _op_def_lib.apply_op("Equal", x=x, y=y, name=name)
File "/Users/user/.pyenvs/MLPy3/lib/python3.5/site-packages/tensorflow/python/framework/op_def_library.py", line 759, in apply_op
op_def=op_def)
File "/Users/user/.pyenvs/MLPy3/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 2240, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/Users/user/.pyenvs/MLPy3/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 1128, in __init__
self._traceback = _extract_stack()
InvalidArgumentError (see above for traceback): Incompatible shapes: [1,893] vs. [1,9]
[[Node: Equal = Equal[T=DT_INT64, _device="/job:localhost/replica:0/task:0/cpu:0"](ArgMax, ArgMax_1)]]
ありがとう!
あなたが達成しようとしていることに関する詳細情報を提供できますか?なぜあなたの 'TimeDistributed'が最後の出力ですか?あなたの目標yの次元は何ですか? – ShmulikA
入力と出力の形状、print model.summary()と完全なエラーメッセージを提供できますか? –
完了。あなたの時間をありがとう! –