2017-04-23 10 views
0

私はLavaanで非再帰モデルを実行しています。しかし、2つのことが起こった、私はかなり理解していない。第一に、適合度指数およびいくつかの標準誤差は「NA」であった。第2に、異なる方向の2つの変数間の2つの係数が一致していなかった(非再帰部分:ResidentialMobility - Author):1つは正であり、もう1つは負であった(少なくとも同じ方向にすべきである。説明?)。誰かが私を助けることができますか?あなたが私にそれをもっと明確にしてほしいかどうか私に知らせてください。ありがとう!適合度指数 "NA"

model01<-'ResidentialMobility~a*Coun 
SavingMotherPercentage~e*Affect 
SavingMotherPercentage~f*Author 
SavingMotherPercentage~g*Recipro 

Affect~b*ResidentialMobility 
Author~c*ResidentialMobility 
Recipro~d*ResidentialMobility 

ResidentialMobility~h*Affect 
ResidentialMobility~i*Author 
ResidentialMobility~j*Recipro 

Affect~~Author+Recipro+ResidentialMobility 
Author~~Recipro+ResidentialMobility 
Recipro~~ResidentialMobility 


Coun~SavingMotherPercentage 

ab:=a*b 
ac:=a*c 
ad:=a*d 

be:=b*e 
cf:=c*f 
dg:=d*g 
' 

fit <- cfa(model01, estimator = "MLR", data = data01, missing = "FIML") 
summary(fit, standardized = TRUE, fit.measures = TRUE) 

出力:あなたは私はあなたとモデルを指定しているので、-2度であると思いNA取得なぜ

lavaan(0.5から21)は、93回の反復

            Used  Total 
    Number of observations       502   506 

    Number of missing patterns       4 

    Estimator           ML  Robust 
    Minimum Function Test Statistic     NA   NA 
    Degrees of freedom        -2   -2 
    Minimum Function Value    0.0005232772506 
    Scaling correction factor       
    for the Yuan-Bentler correction 

User model versus baseline model: 

    Comparative Fit Index (CFI)      NA   NA 
    Tucker-Lewis Index (TLI)       NA   NA 

Loglikelihood and Information Criteria: 

    Loglikelihood user model (H0)    -5057.346 -5057.346 
    Loglikelihood unrestricted model (H1)  -5057.084 -5057.084 

    Number of free parameters       29   29 
    Akaike (AIC)        10172.693 10172.693 
    Bayesian (BIC)        10295.032 10295.032 
    Sample-size adjusted Bayesian (BIC)  10202.984 10202.984 

Root Mean Square Error of Approximation: 

    RMSEA            NA   NA 
    90 Percent Confidence Interval    NA  NA   NA  NA 
    P-value RMSEA <= 0.05        NA   NA 

Standardized Root Mean Square Residual: 

    SRMR           0.006  0.006 

Parameter Estimates: 

    Information         Observed 
    Standard Errors     Robust.huber.white 

Regressions: 
          Estimate Std.Err z-value P(>|z|) Std.lv Std.all 
    ResidentialMobility ~               
    Coun  (a)   -1.543 0.255 -6.052 0.000 -1.543 -0.540 
    SavingMotherPercentage ~              
    Affect  (e)   3.093 1.684 1.837 0.066 3.093 0.122 
    Author  (f)   2.618 0.923 2.835 0.005 2.618 0.145 
    Recipro (g)   0.061 1.344 0.046 0.964 0.061 0.003 
    Affect ~                  
    RsdntlMblt (b)   -0.311 0.075 -4.125 0.000 -0.311 -0.570 
    Author ~                  
    RsdntlMblt (c)   -0.901 0.119 -7.567 0.000 -0.901 -1.180 
    Recipro ~                  
    RsdntlMblt (d)   -0.313 0.082 -3.841 0.000 -0.313 -0.512 
    ResidentialMobility ~               
    Affect  (h)   -0.209 0.193 -1.082 0.279 -0.209 -0.114 
    Author  (i)   0.475 0.192 2.474 0.013 0.475 0.363 
    Recipro (j)   0.178 0.346 0.514 0.607 0.178 0.109 
    Coun ~                   
SvngMthrPr    0.003 0.001 2.225 0.026 0.003 0.108 

Covariances: 
         Estimate Std.Err z-value P(>|z|) Std.lv Std.all 
.Affect ~~                 
    .Author     0.667 0.171 3.893 0.000 0.667 0.534 
    .Recipro     0.669 0.119 5.623 0.000 0.669 0.773 
.ResidentialMobility ~~              
    .Affect     0.624 0.144 4.347 0.000 0.624 0.474 
.Author ~~                 
    .Recipro     0.565 0.173 3.267 0.001 0.565 0.416 
.ResidentialMobility ~~              
    .Author     1.029 0.288 3.572 0.000 1.029 0.499 
    .Recipro     0.564 0.304 1.851 0.064 0.564 0.395 

Intercepts: 
        Estimate Std.Err z-value P(>|z|) Std.lv Std.all 
    .ResidentlMblty 1.813  NA      1.813 1.270 
    .SvngMthrPrcntg 29.591 7.347 4.027 0.000 29.591 1.499 
    .Affect   5.701 0.169 33.797 0.000 5.701 7.320 
    .Author   5.569 0.275 20.259 0.000 5.569 5.109 
    .Recipro   5.149 0.186 27.642 0.000 5.149 5.889 
    .Coun    0.367 0.069 5.336 0.000 0.367 0.735 

Variances: 
        Estimate Std.Err z-value P(>|z|) Std.lv Std.all 
    .ResidentlMblty 2.169 0.259 8.378 0.000 2.169 1.064 
    .SvngMthrPrcntg 363.792 23.428 15.528 0.000 363.792 0.934 
    .Affect   0.797 0.129 6.153 0.000 0.797 1.314 
    .Author   1.957 0.343 5.713 0.000 1.957 1.647 
    .Recipro   0.941 0.126 7.439 0.000 0.941 1.231 
    .Coun    0.242 0.004 54.431 0.000 0.242 0.969 

Defined Parameters: 
        Estimate Std.Err z-value P(>|z|) Std.lv Std.all 
    ab    0.480 0.120 3.991 0.000 0.480 0.308 
    ac    1.390 0.261 5.328 0.000 1.390 0.637 
    ad    0.483 0.133 3.640 0.000 0.483 0.276 
    be    -0.962 0.548 -1.757 0.079 -0.962 -0.070 
    cf    -2.359 0.851 -2.771 0.006 -2.359 -0.171 
    dg    -0.019 0.421 -0.046 0.964 -0.019 -0.001 

答えて

0

後に正常に収束自由。正の数の自由度を得るように、モデルを別に指定する必要があります。