2017-12-15 10 views
0

エンコーダの各ステップでカスタム計算を行う必要があるエンコーダ/デコーダlstmを実装しています。したがって、私はraw_rnnを使用しています。しかし、私は時間ステップtimeBatch x Time steps x Embedding dimensionalityという形になっている埋め込みから要素にアクセスする際に問題に直面しています。ここでTensorflow raw_rnnテンソルの形状を取得埋め込み行列からBATCH x DIMを取得

は私の設定です:

import tensorflow as tf 
import numpy as np 

batch_size, max_time, input_embedding_size = 5, 10, 16 
vocab_size, num_units = 50, 64 

encoder_inputs = tf.placeholder(shape=(None, None), dtype=tf.int32, name='encoder_inputs') 
encoder_inputs_length = tf.placeholder(shape=(None,), dtype=tf.int32, name='encoder_inputs_length') 

embeddings = tf.Variable(tf.random_uniform([vocab_size + 2, input_embedding_size], -1.0, 1.0), 
         dtype=tf.float32, name='embeddings') 
encoder_inputs_embedded = tf.nn.embedding_lookup(embeddings, encoder_inputs) 

cell = tf.contrib.rnn.LSTMCell(num_units) 

本体:

with tf.variable_scope('ReaderNetwork'): 
def loop_fn_initial(): 
    init_elements_finished = (0 >= encoder_inputs_length) 
    init_input = cell.zero_state(batch_size, tf.float32) 
    init_cell_state = None 
    init_cell_output = None 
    init_loop_state = None 
    return (init_elements_finished, init_input, 
      init_cell_state, init_cell_output, init_loop_state) 


def loop_fn_transition(time, previous_output, previous_state, previous_loop_state): 
    def get_next_input(): 
     # **TODO** read tensor of shape BATCH X EMBEDDING_DIM from encoder_inputs_embedded 
     # which has shape BATCH x TIME_STEPS x EMBEDDING_DIM 

    elements_finished = (time >= encoder_inputs_length) 
    finished = tf.reduce_all(elements_finished) # boolean scalar 
    input_val = tf.cond(finished, 
         true_fn=lambda: tf.zeros([batch_size, input_embedding_size]), false_fn=get_next_input) 
    state = previous_state 
    output = previous_output 
    loop_state = None 
    return elements_finished, input_val, state, output, loop_state 


def loop_fn(time, previous_output, previous_state, previous_loop_state): 
    if previous_state is None: # time = 0 
     assert previous_output is None and previous_state is None 
     return loop_fn_initial() 
    return loop_fn_transition(time, previous_output, previous_state, previous_loop_state) 

実行している一部:

reader_loop = loop_fn 
encoder_outputs_ta, encoder_final_state, _ = tf.nn.raw_rnn(cell, loop_fn=reader_loop) 
outputs = encoder_outputs_ta.stack() 

def next_batch(): 
    return { 
     encoder_inputs: np.random.random((batch_size, max_time)), 
     encoder_inputs_length: [max_time] * batch_size 
    } 

init = tf.global_variables_initializer() 
with tf.Session() as s: 
    s.run(init) 
    outs = s.run([outputs], feed_dict=next_batch()) 
    print len(outs), outs[0].shape 

の質問:で、埋め込みの一部にアクセスする方法時間ステップと形状のテンソルを返すbatch x embedding dimloop_fn_transition内の機能get_next_inputを参照してください。

ありがとうございます。

答えて

0

問題を修正できました。埋め込みの形状はBatch x Time steps x Embedding dimensionalityなので、私はtimeディメンションにスライスします。結果として得られるテンソルの形状は(?, embedding dimensionality)です。これは正しい方法であれば

def get_next_input(): 
    embedded_value = encoder_inputs_embedded[:, time, :] 
    embedded_value.set_shape([batch_size, input_embedding_size]) 
    return embedded_value 

は誰でも確認することができます:ここで

ValueError: The shape for rnn/while/Merge_2:0 is not an invariant for the loop

が関連する部分である:また、明示的にエラーを回避するために、結果としてテンソルの形状を設定するために必要とされますこの問題を解決するために?ここで

は、参考のために完全なコードです:

import tensorflow as tf 
import numpy as np 

batch_size, max_time, input_embedding_size = 5, 10, 16 
vocab_size, num_units = 50, 64 

encoder_inputs = tf.placeholder(shape=(None, None), dtype=tf.int32, name='encoder_inputs') 
encoder_inputs_length = tf.placeholder(shape=(None,), dtype=tf.int32, name='encoder_inputs_length') 

embeddings = tf.Variable(tf.random_uniform([vocab_size + 2, input_embedding_size], -1.0, 1.0), 
         dtype=tf.float32, name='embeddings') 
encoder_inputs_embedded = tf.nn.embedding_lookup(embeddings, encoder_inputs) 

cell = tf.contrib.rnn.LSTMCell(num_units) 
W = tf.Variable(tf.random_uniform([num_units, vocab_size], -1, 1), dtype=tf.float32, name='W_reader') 
b = tf.Variable(tf.zeros([vocab_size]), dtype=tf.float32, name='b_reader') 
go_time_slice = tf.ones([batch_size], dtype=tf.int32, name='GO') * 1 
go_step_embedded = tf.nn.embedding_lookup(embeddings, go_time_slice) 


with tf.variable_scope('ReaderNetwork'): 
    def loop_fn_initial(): 
     init_elements_finished = (0 >= encoder_inputs_length) 
     init_input = go_step_embedded 
     init_cell_state = cell.zero_state(batch_size, tf.float32) 
     init_cell_output = None 
     init_loop_state = None 
     return (init_elements_finished, init_input, 
       init_cell_state, init_cell_output, init_loop_state) 

    def loop_fn_transition(time, previous_output, previous_state, previous_loop_state): 
     def get_next_input(): 
      embedded_value = encoder_inputs_embedded[:, time, :] 
      embedded_value.set_shape([batch_size, input_embedding_size]) 
      return embedded_value 

     elements_finished = (time >= encoder_inputs_length) 
     finished = tf.reduce_all(elements_finished) # boolean scalar 
     next_input = tf.cond(finished, 
          true_fn=lambda: tf.zeros([batch_size, input_embedding_size], dtype=tf.float32), 
          false_fn=get_next_input) 
     state = previous_state 
     output = previous_output 
     loop_state = None 
     return elements_finished, next_input, state, output, loop_state 


    def loop_fn(time, previous_output, previous_state, previous_loop_state): 
     if previous_state is None: # time = 0 
      return loop_fn_initial() 
     return loop_fn_transition(time, previous_output, previous_state, previous_loop_state) 

reader_loop = loop_fn 
encoder_outputs_ta, encoder_final_state, _ = tf.nn.raw_rnn(cell, loop_fn=reader_loop) 
outputs = encoder_outputs_ta.stack() 


def next_batch(): 
    return { 
     encoder_inputs: np.random.randint(0, vocab_size, (batch_size, max_time)), 
     encoder_inputs_length: [max_time] * batch_size 
    } 


init = tf.global_variables_initializer() 
with tf.Session() as s: 
    s.run(init) 
    outs = s.run([outputs], feed_dict=next_batch()) 
    print len(outs), outs[0].shape 
関連する問題