私はCaffeで回帰をしています。データセットは128x128サイズの400のRGB画像であり、ラベルには範囲(-1,1)の浮動小数点数が含まれています。 データセットに適用した唯一の変換は、正規化(RGBの各ピクセル値を255で除算)でした。しかし、損失はまったく収束していないようです。このために考えられる理由であるかもしれない何損失が収束しないCaffe回帰
?誰でも私を提案できますか?ここで
は私のトレーニングログです:
Training..
Using solver: solver_hdf5.prototxt
I0929 21:50:21.657784 13779 caffe.cpp:112] Use CPU.
I0929 21:50:21.658033 13779 caffe.cpp:174] Starting Optimization
I0929 21:50:21.658107 13779 solver.cpp:34] Initializing solver from parameters:
test_iter: 100
test_interval: 500
base_lr: 0.0001
display: 25
max_iter: 10000
lr_policy: "inv"
gamma: 0.0001
power: 0.75
momentum: 0.9
weight_decay: 0.0005
snapshot: 5000
snapshot_prefix: "lenet_hdf5"
solver_mode: CPU
net: "train_test_hdf5.prototxt"
I0929 21:50:21.658143 13779 solver.cpp:75] Creating training net from net file: train_test_hdf5.prototxt
I0929 21:50:21.658567 13779 net.cpp:334] The NetState phase (0) differed from the phase (1) specified by a rule in layer data
I0929 21:50:21.658709 13779 net.cpp:46] Initializing net from parameters:
name: "MSE regression"
state {
phase: TRAIN
}
layer {
name: "data"
type: "HDF5Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
hdf5_data_param {
source: "train_hdf5file.txt"
batch_size: 64
shuffle: true
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "dropout1"
type: "Dropout"
bottom: "pool1"
top: "pool1"
dropout_param {
dropout_ratio: 0.1
}
}
layer {
name: "fc1"
type: "InnerProduct"
bottom: "pool1"
top: "fc1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "dropout2"
type: "Dropout"
bottom: "fc1"
top: "fc1"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc2"
type: "InnerProduct"
bottom: "fc1"
top: "fc2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "loss"
type: "EuclideanLoss"
bottom: "fc2"
bottom: "label"
top: "loss"
}
I0929 21:50:21.658833 13779 layer_factory.hpp:74] Creating layer data
I0929 21:50:21.658859 13779 net.cpp:96] Creating Layer data
I0929 21:50:21.658871 13779 net.cpp:415] data -> data
I0929 21:50:21.658902 13779 net.cpp:415] data -> label
I0929 21:50:21.658926 13779 net.cpp:160] Setting up data
I0929 21:50:21.658936 13779 hdf5_data_layer.cpp:80] Loading list of HDF5 filenames from: train_hdf5file.txt
I0929 21:50:21.659220 13779 hdf5_data_layer.cpp:94] Number of HDF5 files: 1
I0929 21:50:21.920578 13779 net.cpp:167] Top shape: 64 3 128 128 (3145728)
I0929 21:50:21.920656 13779 net.cpp:167] Top shape: 64 1 (64)
I0929 21:50:21.920686 13779 layer_factory.hpp:74] Creating layer conv1
I0929 21:50:21.920740 13779 net.cpp:96] Creating Layer conv1
I0929 21:50:21.920774 13779 net.cpp:459] conv1 <- data
I0929 21:50:21.920825 13779 net.cpp:415] conv1 -> conv1
I0929 21:50:21.920877 13779 net.cpp:160] Setting up conv1
I0929 21:50:21.921985 13779 net.cpp:167] Top shape: 64 20 124 124 (19681280)
I0929 21:50:21.922050 13779 layer_factory.hpp:74] Creating layer relu1
I0929 21:50:21.922085 13779 net.cpp:96] Creating Layer relu1
I0929 21:50:21.922108 13779 net.cpp:459] relu1 <- conv1
I0929 21:50:21.922137 13779 net.cpp:404] relu1 -> conv1 (in-place)
I0929 21:50:21.922185 13779 net.cpp:160] Setting up relu1
I0929 21:50:21.922227 13779 net.cpp:167] Top shape: 64 20 124 124 (19681280)
I0929 21:50:21.922250 13779 layer_factory.hpp:74] Creating layer pool1
I0929 21:50:21.922277 13779 net.cpp:96] Creating Layer pool1
I0929 21:50:21.922298 13779 net.cpp:459] pool1 <- conv1
I0929 21:50:21.922323 13779 net.cpp:415] pool1 -> pool1
I0929 21:50:21.922418 13779 net.cpp:160] Setting up pool1
I0929 21:50:21.922472 13779 net.cpp:167] Top shape: 64 20 62 62 (4920320)
I0929 21:50:21.922495 13779 layer_factory.hpp:74] Creating layer dropout1
I0929 21:50:21.922534 13779 net.cpp:96] Creating Layer dropout1
I0929 21:50:21.922555 13779 net.cpp:459] dropout1 <- pool1
I0929 21:50:21.922582 13779 net.cpp:404] dropout1 -> pool1 (in-place)
I0929 21:50:21.922613 13779 net.cpp:160] Setting up dropout1
I0929 21:50:21.922652 13779 net.cpp:167] Top shape: 64 20 62 62 (4920320)
I0929 21:50:21.922672 13779 layer_factory.hpp:74] Creating layer fc1
I0929 21:50:21.922709 13779 net.cpp:96] Creating Layer fc1
I0929 21:50:21.922729 13779 net.cpp:459] fc1 <- pool1
I0929 21:50:21.922757 13779 net.cpp:415] fc1 -> fc1
I0929 21:50:21.922801 13779 net.cpp:160] Setting up fc1
I0929 21:50:22.301134 13779 net.cpp:167] Top shape: 64 500 (32000)
I0929 21:50:22.301193 13779 layer_factory.hpp:74] Creating layer dropout2
I0929 21:50:22.301210 13779 net.cpp:96] Creating Layer dropout2
I0929 21:50:22.301218 13779 net.cpp:459] dropout2 <- fc1
I0929 21:50:22.3net.cpp:404] dropout2 -> fc1 (in-place)
I0929 21:50:22.301244 13779 net.cpp:160] Setting up dropout2
I0929 21:50:22.301254 13779 net.cpp:167] Top shape: 64 500 (32000)
I0929 21:50:22.301259 13779 layer_factory.hpp:74] Creating layer fc2
I0929 21:50:22.301270 13779 net.cpp:96] Creating Layer fc2
I0929 21:50:22.301275 13779 net.cpp:459] fc2 <- fc1
I0929 21:50:22.301285 13779 net.cpp:415] fc2 -> fc2
I0929 21:50:22.301295 13779 net.cpp:160] Setting up fc2
I0929 21:50:22.301317 13779 net.cpp:167] Top shape: 64 1 (64)
I0929 21:50:22.301328 13779 layer_factory.hpp:74] Creating layer loss
I0929 21:50:22.301338 13779 net.cpp:96] Creating Layer loss
I0929 21:50:22.301343 13779 net.cpp:459] loss <- fc2
I0929 21:50:22.301350 13779 net.cpp:459] loss <- label
I0929 21:50:22.301360 13779 net.cpp:415] loss -> loss
I0929 21:50:22.301374 13779 net.cpp:160] Setting up loss
I0929 21:50:22.301385 13779 net.cpp:167] Top shape: (1)
I0929 21:50:22.301391 13779 net.cpp:169] with loss weight 1
I0929 21:50:22.301419 13779 net.cpp:239] loss needs backward computation.
I0929 21:50:22.301425 13779 net.cpp:239] fc2 needs backward computation.
I0929 21:50:22.301430 13779 net.cpp:239] dropout2 needs backward computation.
I0929 21:50:22.301436 13779 net.cpp:239] fc1 needs backward computation.
I0929 21:50:22.301441 13779 net.cpp:239] dropout1 needs backward computation.
I0929 21:50:22.301446 13779 net.cpp:239] pool1 needs backward computation.
I0929 21:50:22.301452 13779 net.cpp:239] relu1 needs backward computation.
I0929 21:50:22.301457 13779 net.cpp:239] conv1 needs backward computation.
I0929 21:50:22.301463 13779 net.cpp:241] data does not need backward computation.
I0929 21:50:22.301468 13779 net.cpp:282] This network produces output loss
I0929 21:50:22.301482 13779 net.cpp:531] Collecting Learning Rate and Weight Decay.
I0929 21:50:22.301491 13779 net.cpp:294] Network initialization done.
I0929 21:50:22.301496 13779 net.cpp:295] Memory required for data: 209652228
I0929 21:50:22.301908 13779 solver.cpp:159] Creating test net (#0) specified by net file: train_test_hdf5.prototxt
I0929 21:50:22.301935 13779 net.cpp:334] The NetState phase (1) differed from the phase (0) specified by a rule in layer data
I0929 21:50:22.302028 13779 net.cpp:46] Initializing net from parameters:
name: "MSE regression"
state {
phase: TEST
}
layer {
name: "data"
type: "HDF5Data"
top: "data"
top: "label"
include {
phase: TEST
}
hdf5_data_param {
source: "test_hdf5file.txt"
batch_size: 30
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "dropout1"
type: "Dropout"
bottom: "pool1"
top: "pool1"
dropout_param {
dropout_ratio: 0.1
}
}
layer {
name: "fc1"
type: "InnerProduct"
bottom: "pool1"
top: "fc1"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 500
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "dropout2"
type: "Dropout"
bottom: "fc1"
top: "fc1"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc2"
type: "InnerProduct"
bottom: "fc1"
top: "fc2"
param {
lr_mult: 1
decay_mult: 1
}
param {
lr_mult: 2
decay_mult: 0
}
inner_product_param {
num_output: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "loss"
type: "EuclideanLoss"
bottom: "fc2"
bottom: "label"
top: "loss"
}
I0929 21:50:22.302146 13779 layer_factory.hpp:74] Creating layer data
I0929 21:50:22.302158 13779 net.cpp:96] Creating Layer data
I0929 21:50:22.302165 13779 net.cpp:415] data -> data
I0929 21:50:22.302176 13779 net.cpp:415] data -> label
I0929 21:50:22.302186 13779 net.cpp:160] Setting up data
I0929 21:50:22.302191 13779 hdf5_data_layer.cpp:80] Loading list of HDF5 filenames from: test_hdf5file.txt
I0929 21:50:22.302305 13779 hdf5_data_layer.cpp:94] Number of HDF5 files: 1
I0929 21:50:22.434798 13779 net.cpp:167] Top shape: 30 3 128 128 (1474560)
I0929 21:50:22.434849 13779 net.cpp:167] Top shape: 30 1 (30)
I0929 21:50:22.434864 13779 layer_factory.hpp:74] Creating layer conv1
I0929 21:50:22.434895 13779 net.cpp:96] Creating Layer conv1
I0929 21:50:22.434914 13779 net.cpp:459] conv1 <- data
I0929 21:50:22.434944 13779 net.cpp:415] conv1 -> conv1
I0929 21:50:22.434996 13779 net.cpp:160] Setting up conv1
I0929 21:50:22.435084 13779 net.cpp:167] Top shape: 30 20 124 124 (9225600)
I0929 21:50:22.435119 13779 layer_factory.hpp:74] Creating layer relu1
I0929 21:50:22.435205 13779 net.cpp:96] Creating Layer relu1
I0929 21:50:22.435237 13779 net.cpp:459] relu1 <- conv1
I0929 21:50:22.435292 13779 net.cpp:404] relu1 -> conv1 (in-place)
I0929 21:50:22.435328 13779 net.cpp:160] Setting up relu1
I0929 21:50:22.435371 13779 net.cpp:167] Top shape: 30 20 124 124 (9225600)
I0929 21:50:22.435400 13779 layer_factory.hpp:74] Creating layer pool1
I0929 21:50:22.435443 13779 net.cpp:96] Creating Layer pool1
I0929 21:50:22.435470 13779 net.cpp:459] pool1 <- conv1
I0929 21:50:22.435511 13779 net.cpp:415] pool1 -> pool1
I0929 21:50:22.435550 13779 net.cpp:160] Setting up pool1
I0929 21:50:22.435597 13779 net.cpp:167] Top shape: 30 20 62 62 (2306400)
I0929 21:50:22.435626 13779 layer_factory.hpp:74] Creating layer dropout1
I0929 21:50:22.435669 13779 net.cpp:96] Creating Layer dropout1
I0929 21:50:22.435698 13779 net.cpp:459] dropout1 <- pool1
I0929 21:50:22.435739 13779 net.cpp:404] dropout1 -> pool1 (in-place)
I0929 21:50:22.435780 13779 net.cpp:160] Setting up dropout1
I0929 21:50:22.435823 13779 net.cpp:167] Top shape: 30 20 62 62 (2306400)
I0929 21:50:22.435853 13779 layer_factory.hpp:74] Creating layer fc1
I0929 21:50:22.435899 13779 net.cpp:96] Creating Layer fc1
I0929 21:50:22.435926 13779 net.cpp:459] fc1 <- pool1
I0929 21:50:22.435971 13779 net.cpp:415] fc1 -> fc1
I0929 21:50:22.436018 13779 net.cpp:160] Setting up fc1
I0929 21:50:22.816076 13779 net.cpp:167] Top shape: 30 500 (15000)
I0929 21:50:22.816138 13779 layer_factory.hpp:74] Creating layer dropout2
I0929 21:50:22.816154 13779 net.cpp:96] Creating Layer dropout2
I0929 21:50:22.816160 13779 net.cpp:459] dropout2 <- fc1
I0929 21:50:22.816170 13779 net.cpp:404] dropout2 -> fc1 (in-place)
I0929 21:50:22.816182 13779 net.cpp:160] Setting up dropout2
I0929 21:50:22.816192 13779 net.cpp:167] Top shape: 30 500 (15000)
I0929 21:50:22.816197 13779 layer_factory.hpp:74] Creating layer fc2
I0929 21:50:22.816208 13779 net.cpp:96] Creating Layer fc2
I0929 21:50:22.816249 13779 net.cpp:459] fc2 <- fc1
I0929 21:50:22.816262 13779 net.cpp:415] fc2 -> fc2
I0929 21:50:22.816277 13779 net.cpp:160] Setting up fc2
I0929 21:50:22.816301 13779 net.cpp:167] Top shape: 30 1 (30)
I0929 21:50:22.816316 13779 layer_factory.hpp:74] Creating layer loss
I0929 21:50:22.816329 13779 net.cpp:96] Creating Layer loss
I0929 21:50:22.816337 13779 net.cpp:459] loss <- fc2
I0929 21:50:22.816347 13779 net.cpp:459] loss <- label
I0929 21:50:22.816359 13779 net.cpp:415] loss -> loss
I0929 21:50:22.816370 13779 net.cpp:160] Setting up loss
I0929 21:50:22.816381 13779 net.cpp:167] Top shape: (1)
I0929 21:50:22.816388 13779 net.cpp:169] with loss weight 1
I0929 21:50:22.816407 13779 net.cpp:239] loss needs backward computation.
I0929 21:50:22.816416 13779 net.cpp:239] fc2 needs backward computation.
I0929 21:50:22.816426 13779 net.cpp:239] dropout2 needs backward computation.
I0929 21:50:22.816433 13779 net.cpp:239] fc1 needs backward computation.
I0929 21:50:22.816442 13779 net.cpp:239] dropout1 needs backward computation.
I0929 21:50:22.816452 13779 net.cpp:239] pool1 needs backward computation.
I0929 21:50:22.816460 13779 net.cpp:239] relu1 needs backward computation.
I0929 21:50:22.816468 13779 net.cpp:239] conv1 needs backward computation.
I0929 21:50:22.816478 13779 net.cpp:241] data does not need backward computation.
I0929 21:50:22.816486 13779 net.cpp:282] This network produces output loss
I0929 21:50:22.816500 13779 net.cpp:531] Collecting Learning Rate and Weight Decay.
I0929 21:50:22.816510 13779 net.cpp:294] Network initialization done.
I0929 21:50:22.816517 13779 net.cpp:295] Memory required for data: 98274484
I0929 21:50:22.816565 13779 solver.cpp:47] Solver scaffolding done.
I0929 21:50:22.816587 13779 solver.cpp:363] Solving MSE regression
I0929 21:50:22.816596 13779 solver.cpp:364] Learning Rate Policy: inv
I0929 21:50:22.870337 13779 solver.cpp:424] Iteration 0, Testing net (#0)
アップデート(これは@lejlotの返信の後で)
訓練画像私を変更した後、データ:
@lejlotありがとうございます。私は、画像データを255回に2回に分けたことに気付きました。今私はcaffe.io.load_imageが部門自体をしたことを知っています。私はそれを明示的に行う必要はありません。そして、-nanエラーのために学習率を上げることができませんでした。 0.0001の学習率で、私は0.08の反復0の損失を得ています。うまくいけば、損失の顕著な減少を見ることができます。今は大丈夫だと思う。また、(私の訓練が十分であると考えるべきときのように)どんな種類の喪失が私の場合に満足すべきものかを教えてください。私は新しいトレーニング画像を添付しました。 – magneto
あなたは「満足のいく損失」とは言えません。そのようなオブジェクトはありません。それをテストし、データの観点から分析しなければなりません。番号自体はまったく重要ではありません。特に、トレーニングの喪失は何も意味しません。通常は0のトレーニングエラーに訓練することができます(たとえそれがアドバイスされていないと考えても) – lejlot