0
人工データを使った線形回帰のシミュレーションを行い、RSEとR Squareを手動で計算しています。私は、モデルを訓練したIn Sampleデータセットに対してこれを行い、次にOut of Sampleデータセットでモデルをテストします。サンプル外およびサンプル内のデータは、同じ正規分布から引き出されますが、異なるシードが使用されます。私の数字は、サンプル外のデータセットに関しては意味がありません。バグを見つけるのを助けてくれますか?負の線形回帰のテストデータセットのR-二乗?
set.seed(1)
z1 <- rnorm(100)
z2 <- z1^2
error <- rnorm(100, sd = 0.25)
y1 <- 1 + 2 * z1 + error
data1 <- data.table(y1, z1, z2)
model_quad <- lm(y1 ~ z1 + z2, data1)
model_lin <- lm(y1 ~ z1, data1)
confint(model_lin)
confint(model_quad)
summary(model_lin)
summary(model_quad)
ggplot(data1) +
geom_point(aes(x = z1, y = y1), color = "blue", size = 3) +
geom_point(aes(x = z2, y = y1), color = "red", size = 3) +
geom_line(stat = "smooth", method = lm, aes(x = z1, y = y1), color = "blue", size = 2, alpha = 0.5) +
geom_line(stat = "smooth", method = lm, aes(x = z2, y = y1), color = "red", size = 2, alpha = 0.5) +
geom_ribbon(stat = "smooth", method = lm, aes(x = z1, y = y1), fill = "blue", alpha = 0.1) +
geom_ribbon(stat = "smooth", method = lm, aes(x = z2, y = y1), fill = "red", alpha = 0.1)
set.seed(100)
z12 <- rnorm(100)
z22 <- z12^2
error2 <- rnorm(100, sd = 0.25)
y2 <- 1 + 2 * z12 + error2
data2 <- data.table(y2, z12, z22)
summary(model_lin)
summary(model_quad)
ggplot(data2) +
geom_point(aes(x = z12, y = y2), color = "blue", size = 3) +
geom_point(aes(x = z22, y = y2), color = "red", size = 3) +
geom_line(stat = "smooth", method = lm, aes(x = z12, y = y2), color = "blue", size = 2, alpha = 0.5) +
geom_line(stat = "smooth", method = lm, aes(x = z22, y = y2), color = "red", size = 2, alpha = 0.5) +
geom_ribbon(stat = "smooth", method = lm, aes(x = z12, y = y2), fill = "blue", alpha = 0.1) +
geom_ribbon(stat = "smooth", method = lm, aes(x = z22, y = y2), fill = "red", alpha = 0.1) +
geom_abline(intercept = 0.99, slope = 1.999, size = 2, color = "yellow", alpha = 0.3)
predictions_in_sample_linear <- predict(model_lin, data1)
predictions_in_sample_quadratic <- predict(model_quad, data1)
predictions_out_of_sample_linear <- predict(model_lin, data2)
predictions_out_of_sample_quadratic <- predict(model_quad, data2)
TSE_in_sample <- (y1 - mean(y1)) %*% (y1 - mean(y1))
RSE_in_sample_linear <- (predictions_in_sample_linear - y1) %*% (predictions_in_sample_linear - y1)
RSE_in_sample_quadratic <- (predictions_in_sample_quadratic - y1) %*% (predictions_in_sample_quadratic - y1)
R_Square_in_sample_linear <- (TSE_in_sample - RSE_in_sample_linear)/TSE_in_sample
R_Square_in_sample_quadratic<- (TSE_in_sample - RSE_in_sample_quadratic)/TSE_in_sample
TSE_out_of_sample <- (y2 - mean(y2)) %*% (y2 - mean(y2))
RSE_out_of_sample_linear <- (predictions_out_of_sample_linear - y2) %*% (predictions_out_of_sample_linear - y2)
RSE_out_of_sample_quadratic <- (predictions_out_of_sample_quadratic - y2) %*% (predictions_out_of_sample_quadratic - y2)
R_Square_out_of_sample_linear <- (TSE_out_of_sample - RSE_out_of_sample_linear)/TSE_out_of_sample
R_Square_out_of_sample_quadratic<- (TSE_out_of_sample - RSE_out_of_sample_quadratic)/TSE_out_of_sample
predictions_in_sample_linear
predictions_in_sample_quadratic
predictions_out_of_sample_linear
predictions_out_of_sample_quadratic
TSE_in_sample
RSE_in_sample_linear
RSE_in_sample_quadratic
R_Square_in_sample_linear
R_Square_in_sample_quadratic
TSE_out_of_sample
RSE_out_of_sample_linear
RSE_out_of_sample_quadratic
R_Square_out_of_sample_linear
R_Square_out_of_sample_quadratic
このコードは、Out of Sampleデータに負のR_squareを返します。これは不合理です。
あなたのアドバイスは高く評価されます。