線形回帰のためのテンソルフロープログラムです。私は最適化(最小化)損失関数のためにGradient Descentアルゴリズムを使用しています。しかし、プログラムを実行している間、損失関数の価値は増加しています。私のプログラムと出力は以下の通りです。私のプログラムのためのTensorflow - 線形回帰
import tensorflow as tf
W = tf.Variable([.3],dtype=tf.float32)
b = tf.Variable([-.3],dtype=tf.float32)
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)
sess = tf.Session()
init = init = tf.global_variables_initializer()
sess.run(init)
lm = W*X + b
delta = tf.square(lm-Y)
loss = tf.reduce_sum(delta)
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
for i in range(8):
print(sess.run([W, b]))
print("loss= %f" %sess.run(loss,{X:[10,20,30,40],Y:[1,2,3,4]}))
sess.run(train, {X: [10,20,30,40],Y: [1,2,3,4]})
sess.close()
出力は
2017-12-07 14:50:10.517685: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
[array([ 0.30000001], dtype=float32), array([-0.30000001],dtype=float32)]
loss= 108.359993
[array([-11.09999943], dtype=float32), array([-0.676], dtype=float32)]
loss= 377836.000000
[array([ 662.25195312], dtype=float32), array([ 21.77807617], dtype=float32)]
loss= 1318221568.000000
[array([-39110.421875], dtype=float32), array([-1304.26794434], dtype=float32)]
loss= 4599107289088.000000
[array([ 2310129.25], dtype=float32), array([ 77021.109375], dtype=float32)]
loss= 16045701465112576.000000
[array([ -1.36451664e+08], dtype=float32), array([-4549399.], dtype=float32)]
loss= 55981405829796462592.000000
[array([ 8.05974733e+09], dtype=float32), array([ 2.68717856e+08], dtype=float32)]
loss= 195312036582209632600064.000000
は私の損失の値が減少するのではなく、増加している理由の答えを提供してくださいです。
合意。学習率を下げると、損失が改善されます。 –