2017-06-16 17 views
0

私は2つのデータセットを持っています。クロスバリデーションされたデータセットのF1、精度、リコールの取得方法

train <- read.csv("train.csv") 
test <- read.csv("test.csv") 

列車内のデータは以下のようになります。

> str(train) 
'data.frame': 891 obs. of 12 variables: 
$ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ... 
$ Survived : Factor w/ 2 levels "0","1": 1 2 2 2 1 1 1 1 2 2 ... 
$ Pclass  : int 3 1 3 1 3 3 1 3 3 2 ... 
$ Name  : Factor w/ 891 levels "Abbing, Mr. Anthony",..: 109 191 358 
277 16 559 520 629 417 581 ... 
$ Sex  : Factor w/ 2 levels "female","male": 2 1 1 1 2 2 2 2 1 1 ... 
$ Age  : num 22 38 26 35 35 NA 54 2 27 14 ... 
$ SibSp  : int 1 1 0 1 0 0 0 3 0 1 ... 
$ Parch  : int 0 0 0 0 0 0 0 1 2 0 ... 
$ Ticket  : Factor w/ 681 levels "110152","110413",..: 524 597 670 50 473 276 86 396 345 133 ... 
$ Fare  : num 7.25 71.28 7.92 53.1 8.05 ... 
$ Cabin  : Factor w/ 148 levels "","A10","A14",..: NA 83 NA 57 NA NA 131 NA NA NA ... 
$ Embarked : Factor w/ 4 levels "","C","Q","S": 4 2 4 4 4 3 4 4 4 2 ... 

テストセットのデータは以下のようになります。

> str(test) 
'data.frame': 418 obs. of 11 variables: 
$ PassengerId: int 892 893 894 895 896 897 898 899 900 901 ... 
$ Pclass  : int 3 3 2 3 3 3 3 2 3 3 ... 
$ Name  : Factor w/ 418 levels "Abbott, Master. Eugene Joseph",..: 210 
409 273 414 182 370 85 58 5 104 ... 
$ Sex  : Factor w/ 2 levels "female","male": 2 1 2 2 1 2 1 2 1 2 ... 
$ Age  : num 34.5 47 62 27 22 14 30 26 18 21 ... 
$ SibSp  : int 0 1 0 0 1 0 0 1 0 2 ... 
$ Parch  : int 0 0 0 0 1 0 0 1 0 0 ... 
$ Ticket  : Factor w/ 363 levels "110469","110489",..: 153 222 74 148 
139 262 159 85 101 270 ... 
$ Fare  : num 7.83 7 9.69 8.66 12.29 ... 
$ Cabin  : Factor w/ 77 levels "","A11","A18",..: 1 1 1 1 1 1 1 1 1 1 ... 
$ Embarked : Factor w/ 3 levels "C","Q","S": 2 3 2 3 3 3 2 3 1 3 ... 

私は分類器としてデシソンツリーを使用しています。列車セットを訓練して評価するために10倍交差検定を使用したい。 私はニンジンパッケージを使用しています。

library(caret) 
tc <- trainControl("cv",10) 
rpart.grid <- expand.grid(.cp=0.2) 

(train.rpart <- train( Survived ~ Pclass + Sex + Age + SibSp + Parch + Fare 
         + Embarked, 
         data=train, 
         method="rpart", 
         trControl=tc, 
         na.action = na.omit, 
         tuneGrid=rpart.grid)) 

ここから、クロスバリデーションの正確さの値を得ることができます。

712 samples 
    7 predictor 
    2 classes: '0', '1' 

No pre-processing 
Resampling: Cross-Validated (10 fold) 
Summary of sample sizes: 641, 641, 640, 640, 641, 641, ... 
Resampling results: 

    Accuracy Kappa  
    0.7794601 0.5334528 

Tuning parameter 'cp' was held constant at a value of 0.2 

私の質問は、同様の方法で10倍交差検証データセットの精度、再呼び出し、F1を見つける方法ですか?

答えて

1

現在のアプローチは、回帰ではなく、分類を実行するRPARTリード整数として生存転帰を読み出します。因子レベルにコード化する方がよい。このような精度、リコール、およびF1として

評価指標は素晴らしいconfusionMatrix機能を介して利用可能です。

library(caret) 
train <- read.csv("train.csv") 
test <- read.csv("test.csv") 
tc <- trainControl("cv",10) 
rpart.grid <- expand.grid(.cp=0.2) 

# Convert variable interpreted as integer to factor 
train$Survived <- as.factor(train$Survived) 

(train.rpart <- train( Survived ~ Pclass + Sex + Age + SibSp + Parch + Fare 
        + Embarked, 
        data=train, 
        method="rpart", 
        trControl=tc, 
        na.action = na.omit, 
        tuneGrid=rpart.grid)) 
# Predict 
pred <- predict(train.rpart, train) 

# Produce confusion matrix from prediction and data used for training 
cf <- confusionMatrix(pred, train.rpart$trainingData$.outcome, mode = "everything") 
print(cf) 
+0

大変ありがとうございます。コードが機能しました。 – Yash

関連する問題