0
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import cross_val_score
import numpy
#Function to create model, required for KerasClassifier
def create_model():
classifier = Sequential()
classifier.add(Dense(12, input_dim=8, activation='relu'))
classifier.add(Dense(8, activation='relu'))
classifier.add(Dense(1, activation='sigmoid'))
classifier.compile(optimizer = 'adam',loss="mean_squared_error")
return model
seed = 7
numpy.random.seed(seed)
model = KerasClassifier(build_fn=create_model, epochs=100, batch_size=32, verbose=0)
kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=seed)
results = cross_val_score(model, X_train, y_train, cv=kfold)
print(results.mean())
はAttributeErrorにクロスバリデーションを折る適用する方法:「KerasClassifier」オブジェクトが属性「損失」CREATE_MODELでKは、変数、ターゲットの回帰タイプ
I am getting an error as the loss does not belong to kerasClassifier and I tried KerasRegressor also still same error I am getting.solve my issue.
はい私はそれを修正しましたが、何らかのエラーを表示しています –
このエラーは 'AttributeError:' KerasClassifier 'オブジェクトに' loss ''属性がありませんか?別のエラーがある場合は、この回答を受け入れて、別の質問をして、新しいエラーを出してください。 –