私はテンソルフローのWebサイトにthis tutorialに基づいて回帰畳み込みニューラルネットワークを構築しました。
複数の画像の結果を一度に評価すると、それぞれの画像を1つずつ評価したときとは異なる結果になります。評価ごとにテンソルフローでニューラルネットワークのバッチ評価を実行すると、私はどのように異なる結果を得ていますか?
より具体的には、3つの同一サンプル画像の場合、バッチとして出力を計算すると729027.5625 729027.5625 729027.5625]
が得られますが、画像の出力を1つずつ計算すると[ 729026.4375] [ 729026.4375] [ 729026.4375]
になります。
なぜこのようなケースが考えられますか?
x = tf.placeholder(tf.float32, shape=[None, 784])
とバッチ評価を行う、私は入力画像の2次元numpyの配列(shape = (100, 784))
EDIT:MWE以下
mwe_db.npyを参照してください私のニューラルネットワークへの入力は、以下のように定義されます
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
import tensorflow as tf
import numpy as np
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
sess = tf.Session()
x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
x_image = tf.reshape(x, [-1,28,28,1])
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(y_conv, y_))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.initialize_all_variables())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x:batch[0], y_: batch[1], keep_prob: 1.0}, session=sess)
print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}, session=sess)
print("test accuracy %g"%accuracy.eval(feed_dict={
x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}, session=sess))
####################
# THE ANOMALY
####################
print "----------------------"
print "THE ANOMALY"
print "----------------------"
mwe_db = np.load("mwe_db.npy")
num_rows = mwe_db.shape[0]
batch_y = y_conv.eval(feed_dict={x: mwe_db[0:2, :], keep_prob: 1.0}, session=sess)
print batch_y
print "----------------------"
for i in xrange(2):
single_y = y_conv.eval(feed_dict={x: mwe_db[i:i+1, :], keep_prob: 1.0}, session=sess)
print single_y
良い私はこの質問を見つけました。少なくとも私はこの問題と同じではありません。 – cauchy
こんにちは、Eddy。異なる結果の理由を理解していますか?私は同様の質問に遭遇しました。 – andong777
理由の一部は浮動小数点数の精度が制限されているため、浮動小数点演算の順序が異なるとわずかな結果が得られます。 – mljack