1
私はDNNClassifier Estimatorを使用しており、評価を予測したいと思います。評価はどのようにして得られますか?
しかし、私は使用予測を知らない。
私は以下の結果を期待しています。
予測評価:XX
plzは、私を助けてくれガイド(使用が予測)
以下、私のコードを与えます。
""" Define """
JOIN_CSV_COLUMNS = ['USER_ID', 'CONTENT_ID', 'CONTENT_NAME_USER', 'RATING', 'CNTY_CD', 'FIRST_ORD_DD', 'LAST_ORD_DD', 'DVCE_MODEL_ID', 'DWN_CNT', 'RATING_AVG', 'CONTENT_NAME_CONTENT', 'PKG_ID', 'LANG', 'TAGS', 'CATEGORY_NAME',
'SLR_ID', 'SLR_CNTY_CD', 'DVCE_LIST', 'FIRST_SALE_DATE', 'RTG_AVG', 'CMT_CNT', 'DESC_LENGTH', 'PRIVILGE', 'REV_COUNT', 'REJ_COUNT', 'PRICE']
""" Numeric Column """
NF_CONTENT_ID = tf.feature_column.numeric_column('CONTENT_ID')
NF_RATING = tf.feature_column.numeric_column('RATING')
NF_FIRST_ORD_DD = tf.feature_column.numeric_column('FIRST_ORD_DD')
NF_LAST_ORD_DD = tf.feature_column.numeric_column('LAST_ORD_DD')
""" Categorical Column """
CF_USER_ID = tf.feature_column.categorical_column_with_hash_bucket('USER_ID', hash_bucket_size=1000)
CF_CONTENT_NAME_USER = tf.feature_column.categorical_column_with_hash_bucket('CONTENT_NAME_USER', hash_bucket_size=1000)
CF_CNTY_CD = tf.feature_column.categorical_column_with_hash_bucket('CNTY_CD', hash_bucket_size=1000)
crossed_columns = [
tf.feature_column.crossed_column(['RATING_AVG', 'RTG_AVG'], hash_bucket_size=1000),
tf.feature_column.crossed_column(['RATING_AVG', 'PRICE'], hash_bucket_size=1000),
tf.feature_column.crossed_column(['RATING_AVG', 'CNTY_CD'], hash_bucket_size=1000),
tf.feature_column.crossed_column(['RATING_AVG', 'CATEGORY_NAME'], hash_bucket_size=1000),
tf.feature_column.crossed_column(['RTG_AVG', 'TAGS'], hash_bucket_size=1000),
tf.feature_column.crossed_column(['CONTENT_NAME_USER', 'TAGS'], hash_bucket_size=1000),
tf.feature_column.crossed_column(['RATING_AVG', 'DWN_CNT'], hash_bucket_size=1000)
]
deep_columns = [
tf.feature_column.indicator_column(CF_USER_ID),
tf.feature_column.indicator_column(CF_CONTENT_NAME_USER),
tf.feature_column.indicator_column(CF_CNTY_CD),
tf.feature_column.indicator_column(CF_DVCE_MODEL_ID),
tf.feature_column.indicator_column(CF_CONTENT_NAME_CONTENT),
NF_CONTENT_ID,
NF_FIRST_ORD_DD,
NF_LAST_ORD_DD,
NF_DWN_CNT,
NF_RATING_AVG,
]
def get_input_fn(data_set, num_epochs=None, shuffle=True):
return tf.estimator.inputs.pandas_input_fn(
x=data_set,
y=data_set["RATING"],
num_epochs=num_epochs,
shuffle=shuffle)
def main(unused_argv):
# Load datasets
training_set = pd.read_csv("./data/Test/train.csv", encoding ='ISO-8859-1', skipinitialspace=True, skiprows=1, names=JOIN_CSV_COLUMNS)
test_set = pd.read_csv("./data/Test/test.csv", encoding ='ISO-8859-1',skipinitialspace=True, skiprows=1, names=JOIN_CSV_COLUMNS)
# Set of 6 examples for which to predict median house values
prediction_set = pd.read_csv("./data/Test/predict.csv", encoding ='ISO-8859-1',skipinitialspace=True, skiprows=1, names=JOIN_CSV_COLUMNS)
# Build 2 layer fully connected DNN with 10, 10 units respectively.
m = tf.estimator.DNNLinearCombinedClassifier(
model_dir=None,
linear_feature_columns=crossed_columns,
dnn_feature_columns=deep_columns,
dnn_hidden_units=[1, 1],
dnn_optimizer='Adam',
dnn_dropout=0.5,
n_classes=6
)
# Train
m.train(input_fn=get_input_fn(training_set), steps=1000)
# Evaluate loss over one epoch of test_set.
ev = m.evaluate(input_fn=get_input_fn(test_set, num_epochs=1, shuffle=False))
if __name__ == "__main__":
tf.app.run()
私は 'dotnetnuke'タグを削除しました。これはCMSのためのもので、テンソルフローのサブカテゴリではありません(少なくともこのサイトにはありません)。 – VDWWD
@ Park.BJ:正しい答えが見つかったら、それを受け入れることができますか? – Beta