私は機械学習のためにPythonを使用することに全く新しいです。私はFortranでのプログラミングの背景から来ています。あなたが想像しているように、Pythonはかなりの飛躍です。私は化学で働き、化学(化学にデータ科学技術を適用する)に携わるようになりました。そのため、パイソン大規模な機械学習ライブラリのアプリケーションが重要です。私もコードを効率的にする必要があります。私は実行し、OKを動作するように見えるコードを書いている。私が知りたいことは:Pythonランダムフォレストとマシンの学習 - 改善
1どのように改善するのがより効率的になるか。
2私が使用していたものに対する代替配合に関する提案、可能であれば別の経路が優れている理由は?
私はデータと回帰の連続モデルを扱う傾向があります。
どのような提案もすばらしく、事前におねがいします。
import scipy
import math
import numpy as np
import pandas as pd
import plotly.plotly as py
import os.path
import sys
from time import time
from sklearn import preprocessing, metrics, cross_validation
from sklearn.cross_validation import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.grid_search import GridSearchCV
from sklearn.cross_validation import KFold
fname = str(raw_input('Please enter the input file name containing total dataset and descriptors (assumes csv file, column headings and first column are labels\n'))
if os.path.isfile(fname) :
SubFeAll = pd.read_csv(fname, sep=",")
else:
sys.exit("ERROR: input file does not exist")
#SubFeAll = pd.read_csv(fname, sep=",")
SubFeAll = SubFeAll.fillna(SubFeAll.mean()) # replace the NA values with the mean of the descriptor
header = SubFeAll.columns.values # Use the column headers as the descriptor labels
SubFeAll.head()
# Set the numpy global random number seed (similar effect to random_state)
np.random.seed(1)
# Random Forest results initialised
RFr2 = []
RFmse = []
RFrmse = []
# Predictions results initialised
RFpredictions = []
metcount = 0
# Give the array from pandas to numpy
npArray = np.array(SubFeAll)
print header.shape
npheader = np.array(header[1:-1])
print("Array shape X = %d, Y = %d " % (npArray.shape))
datax, datay = npArray.shape
# Print specific nparray values to check the data
print("The first element of the input data set, as a minial check please ensure this is as expected = %s" % npArray[0,0])
# Split the data into: names labels of the molecules ; y the True results ; X the descriptors for each data point
names = npArray[:,0]
X = npArray[:,1:-1].astype(float)
y = npArray[:,-1] .astype(float)
X = preprocessing.scale(X)
print X.shape
# Open output files
train_name = "Training.csv"
test_name = "Predictions.csv"
fi_name = "Feature_importance.csv"
with open(train_name,'w') as ftrain, open(test_name,'w') as fpred, open(fi_name,'w') as ffeatimp:
ftrain.write("This file contains the training information for the Random Forest models\n")
ftrain.write("The code use a ten fold cross validation 90% training 10% test at each fold so ten training sets are used here,\n")
ftrain.write("Interation %d ,\n" %(metcount+1))
fpred.write("This file contains the prediction information for the Random Forest models\n")
fpred.write("Predictions are made over a ten fold cross validation hence training on 90% test on 10%. The final prediction are return iteratively over this ten fold cros validation once,\n")
fpred.write("optimised parameters are located via a grid search at each fold,\n")
fpred.write("Interation %d ,\n" %(metcount+1))
ffeatimp.write("This file contains the feature importance information for the Random Forest model,\n")
ffeatimp.write("Interation %d ,\n" %(metcount+1))
# Begin the K-fold cross validation over ten folds
kf = KFold(datax, n_folds=10, shuffle=True, random_state=0)
print "------------------- Begining Ten Fold Cross Validation -------------------"
for train, test in kf:
XTrain, XTest, yTrain, yTest = X[train], X[test], y[train], y[test]
ytestdim = yTest.shape[0]
print("The test set values are : ")
i = 0
if ytestdim%5 == 0:
while i < ytestdim:
print round(yTest[i],2),'\t', round(yTest[i+1],2),'\t', round(yTest[i+2],2),'\t', round(yTest[i+3],2),'\t', round(yTest[i+4],2)
ftrain.write(str(round(yTest[i],2))+','+ str(round(yTest[i+1],2))+','+str(round(yTest[i+2],2))+','+str(round(yTest[i+3],2))+','+str(round(yTest[i+4],2))+',\n')
i += 5
elif ytestdim%4 == 0:
while i < ytestdim:
print round(yTest[i],2),'\t', round(yTest[i+1],2),'\t', round(yTest[i+2],2),'\t', round(yTest[i+3],2)
ftrain.write(str(round(yTest[i],2))+','+str(round(yTest[i+1],2))+','+str(round(yTest[i+2],2))+','+str(round(yTest[i+3],2))+',\n')
i += 4
elif ytestdim%3 == 0 :
while i < ytestdim :
print round(yTest[i],2),'\t', round(yTest[i+1],2),'\t', round(yTest[i+2],2)
ftrain.write(str(round(yTest[i],2))+','+str(round(yTest[i+1],2))+','+str(round(yTest[i+2],2))+',\n')
i += 3
elif ytestdim%2 == 0 :
while i < ytestdim :
print round(yTest[i],2), '\t', round(yTest[i+1],2)
ftrain.write(str(round(yTest[i],2))+','+str(round(yTest[i+1],2))+',\n')
i += 2
else :
while i< ytestdim :
print round(yTest[i],2)
ftrain.write(str(round(yTest[i],2))+',\n')
i += 1
print "\n"
# random forest grid search parameters
print "------------------- Begining Random Forest Grid Search -------------------"
rfparamgrid = {"n_estimators": [10], "max_features": ["auto", "sqrt", "log2"], "max_depth": [5,7]}
rf = RandomForestRegressor(random_state=0,n_jobs=2)
RfGridSearch = GridSearchCV(rf,param_grid=rfparamgrid,scoring='mean_squared_error',cv=10)
start = time()
RfGridSearch.fit(XTrain,yTrain)
# Get best random forest parameters
print("GridSearchCV took %.2f seconds for %d candidate parameter settings" %(time() - start,len(RfGridSearch.grid_scores_)))
RFtime = time() - start,len(RfGridSearch.grid_scores_)
#print(RfGridSearch.grid_scores_) # Diagnos
print("n_estimators = %d " % RfGridSearch.best_params_['n_estimators'])
ne = RfGridSearch.best_params_['n_estimators']
print("max_features = %s " % RfGridSearch.best_params_['max_features'])
mf = RfGridSearch.best_params_['max_features']
print("max_depth = %d " % RfGridSearch.best_params_['max_depth'])
md = RfGridSearch.best_params_['max_depth']
ftrain.write("Random Forest")
ftrain.write("RF search time, %s ,\n" % (str(RFtime)))
ftrain.write("Number of Trees, %s ,\n" % str(ne))
ftrain.write("Number of feature at split, %s ,\n" % str(mf))
ftrain.write("Max depth of tree, %s ,\n" % str(md))
# Train random forest and predict with optimised parameters
print("\n\n------------------- Starting opitimised RF training -------------------")
optRF = RandomForestRegressor(n_estimators = ne, max_features = mf, max_depth = md, random_state=0)
optRF.fit(XTrain, yTrain) # Train the model
RFfeatimp = optRF.feature_importances_
indices = np.argsort(RFfeatimp)[::-1]
print("Training R2 = %5.2f" % optRF.score(XTrain,yTrain))
print("Starting optimised RF prediction")
RFpreds = optRF.predict(XTest)
print("The predicted values now follow :")
RFpredsdim = RFpreds.shape[0]
i = 0
if RFpredsdim%5 == 0:
while i < RFpredsdim:
print round(RFpreds[i],2),'\t', round(RFpreds[i+1],2),'\t', round(RFpreds[i+2],2),'\t', round(RFpreds[i+3],2),'\t', round(RFpreds[i+4],2)
i += 5
elif RFpredsdim%4 == 0:
while i < RFpredsdim:
print round(RFpreds[i],2),'\t', round(RFpreds[i+1],2),'\t', round(RFpreds[i+2],2),'\t', round(RFpreds[i+3],2)
i += 4
elif RFpredsdim%3 == 0 :
while i < RFpredsdim :
print round(RFpreds[i],2),'\t', round(RFpreds[i+1],2),'\t', round(RFpreds[i+2],2)
i += 3
elif RFpredsdim%2 == 0 :
while i < RFpredsdim :
print round(RFpreds[i],2), '\t', round(RFpreds[i+1],2)
i += 2
else :
while i< RFpredsdim :
print round(RFpreds[i],2)
i += 1
print "\n"
RFr2.append(optRF.score(XTest, yTest))
RFmse.append(metrics.mean_squared_error(yTest,RFpreds))
RFrmse.append(math.sqrt(RFmse[metcount]))
print ("Random Forest prediction statistics for fold %d are; MSE = %5.2f RMSE = %5.2f R2 = %5.2f\n\n" % (metcount+1, RFmse[metcount], RFrmse[metcount],RFr2[metcount]))
ftrain.write("Random Forest prediction statistics for fold %d are, MSE =, %5.2f, RMSE =, %5.2f, R2 =, %5.2f,\n\n" % (metcount+1, RFmse[metcount], RFrmse[metcount],RFr2[metcount]))
ffeatimp.write("Feature importance rankings from random forest,\n")
for i in range(RFfeatimp.shape[0]) :
ffeatimp.write("%d. , feature %d , %s, (%f),\n" % (i + 1, indices[i], npheader[indices[i]], RFfeatimp[indices[i]]))
# Store prediction in original order of data (itest) whilst following through the current test set order (j)
metcount += 1
ftrain.write("Fold %d, \n" %(metcount))
print "------------------- Next Fold %d -------------------" %(metcount+1)
j = 0
for itest in test :
RFpredictions.append(RFpreds[j])
j += 1
lennames = names.shape[0]
lenpredictions = len(RFpredictions)
lentrue = y.shape[0]
if lennames == lenpredictions == lentrue :
fpred.write("Names/Label,, Prediction Random Forest,, True Value,\n")
for i in range(0,lennames) :
fpred.write(str(names[i])+",,"+str(RFpredictions[i])+",,"+str(y[i])+",\n")
else :
fpred.write("ERROR - names, prediction and true value array size mismatch. Dumping arrays for manual inspection in predictions.csv\n")
fpred.write("Array printed in the order names/Labels, predictions RF and true values\n")
fpred.write(names+"\n")
fpred.write(RFpredictions+"\n")
fpred.write(y+"\n")
sys.exit("ERROR - names, prediction and true value array size mismatch. Dumping arrays for manual inspection in predictions.csv")
print "Final averaged Random Forest metrics : "
RFamse = sum(RFmse)/10
RFmse_sd = np.std(RFmse)
RFarmse = sum(RFrmse)/10
RFrmse_sd = np.std(RFrmse)
RFslope, RFintercept, RFr_value, RFp_value, RFstd_err = scipy.stats.linregress(RFpredictions, y)
RFR2 = RFr_value**2
print "Average Mean Squared Error = ", RFamse, " +/- ", RFmse_sd
print "Average Root Mean Squared Error = ", RFarmse, " +/- ", RFrmse_sd
print "R2 Final prediction against True values = ", RFR2
fpred.write("\n")
fpred.write("FINAL PREDICTION STATISTICS,\n")
fpred.write("Random Forest average MSE, %s, +/-, %s,\n" %(str(RFamse), str(RFmse_sd)))
fpred.write("Random Forest average RMSE, %s, +/-, %s,\n" %(str(RFarmse), str(RFrmse_sd)))
fpred.write("Random Forest slope, %s, Random Forest intercept, %s,\n" %(str(RFslope), str(RFintercept)))
fpred.write("Random Forest standard error, %s,\n" %(str(RFstd_err)))
fpred.write("Random Forest R, %s,\n" %(str(RFr_value)))
fpred.write("Random Forest R2, %s,\n" %(str(RFR2)))
ftrain.close()
fpred.close()
ffeatimp.close()
また、あなたのデータへの機能の選択を追加することができます
これが改善されると思われる** working code **の場合は、[codereview.se]を参照してください。そうでない場合は、[mcve]で問題を説明してください。 – jonrsharpe
こんにちは - 一般的にいいコードです。ちょっとしたヒント:stdoutのprint文ごとに別々の 'write'を作成する必要はありません。あなたの人生を楽にするために 'heredoc'を探してください;)ここでは(三重引用符で囲みます)http://lofic.github.io/tips/python-heredoc.html – javadba
私はあなたのコードを調べませんでした。 RandomForestを使用している場合、一般的な提案として、SkLearnのExtraTreesにもショットを付ける必要があります。彼らはランダムな森林にもう一つのランダムな層を加え、[抄録](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.65.7485&rep=rep1&type=pdf)を導入した彼らは、一般により良いです。 –