コード
I "メートルUCF101単一のフレームデータとCNNを養成しようとしている。 私の知る限りは問題はどちらかであるtf.nn.softmax and tf.nn.softmax_cross_entropy_with_logits
やコストとオプティマイザ機能のいずれかでの重量の初期化や 損失を理解して。テンソル流損失が減少せず、腐食が0.00%で止まったか?
また、初期化??
import tensorflow as tf
import numpy as np
import scipy as sci
import cv2
import input_data_conv
import skimage.transform
from skimage import color
# Parameters
learning_rate = 0.001
training_iters = 200000
batch_size = 64
display_step = 20
n_classes=101 # number of classes
#Input data and classes
global train_data,train_class,test_data,test_classs,train_i,test_i
test_i, train_i = 0,0
train_data=input_data_conv.train_single_frames
train_class=input_data_conv.train_single_classes
test_data=input_data_conv.test_single_frames
test_classs=input_data_conv.test_single_classes
# Network Parameters
n_input = [227, 227, 3 ]# MNIST data input (img shape: 227*227*3)
dropout = 0.5 # Dropout, probability to keep units
# tf Graph input
x = tf.placeholder(tf.float32, [None, 227,227,3])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32) # dropout (keep probability)
def resize_im(im, nh, nw):
im=np.copy(im)
h, w, _ = im.shape
im = skimage.transform.resize(im, (nh, nw), preserve_range=True)
return im
def create_class_vec(val,nuoclasses):
x=np.zeros(nuoclasses)
x[val]=1
return x
def init_weights(shape):
return tf.Variable(tf.random_normal(shape, stddev=0.01))
def conv2d(name, l_input, w, b,s):
return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(l_input, w, strides=[1, s, s, 1], padding='SAME'),b), name=name)
def conv2dpad(name, l_input, w, b,s):
return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(l_input, w, strides=[1, s, s, 1], padding='VALID'),b), name=name)
def max_pool(name, l_input, k,s):
return tf.nn.max_pool(l_input, ksize=[1, k, k, 1], strides=[1, s, s, 1], padding='SAME', name=name)
def norm(name, l_input, lsize):
return tf.nn.lrn(l_input, lsize, bias=1.0, alpha=0.0001/9.0, beta=0.75, name=name)
def vgg_single_frame(_X, _weights, _biases, _dropout):
# Reshape input picture
_X = tf.reshape(_X, shape=[-1, 227, 227, 3])
conv1 = conv2d('conv1', _X, _weights['wc1'], _biases['bc1'],s=2)
pool1 = max_pool('pool1', conv1, k=3,s=2)
norm1 = norm('norm1', pool1, lsize=5)
conv2 = conv2d('conv2', norm1, _weights['wc2'], _biases['bc2'],s=2)
pool2 = max_pool('pool2', conv2, k=3,s=2)
norm2 = norm('norm2', pool2, lsize=5)
conv3 = conv2d('conv3', norm2, _weights['wc3'], _biases['bc3'],s=1)
conv4 = conv2d('conv4', conv3, _weights['wc4'], _biases['bc4'],s=1)
conv5 = conv2d('conv4', conv4, _weights['wc5'], _biases['bc5'],s=1)
pool5 = max_pool('pool5', conv5, k=3,s=2)
# Fully connected layer
dense1 = tf.reshape(pool5, [-1, _weights['wd1'].get_shape().as_list()[0]]) # Reshape conv3 output to fit dense layer input
dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc6') # Relu activation
dense1 = tf.nn.dropout(dense1, _dropout)
dense2 = tf.nn.relu(tf.matmul(dense1, _weights['wd2']) + _biases['bd2'], name='fc7') # Relu activation
dense2 = tf.nn.dropout(dense2, _dropout)
# Output, class prediction
out = tf.nn.softmax(tf.matmul(dense2, _weights['out']) + _biases['out'])
return out
weights = {
'wc1': tf.Variable(tf.random_normal([7, 7, 3, 96])), # 7x7 conv, 1 input, 96 outputs ,stride 2
'wc2': tf.Variable(tf.random_normal([5, 5, 96, 384])), # 5x5 conv, 32 inputs, 64 outputs
'wc3': tf.Variable(tf.random_normal([3, 3, 384, 512])),#s 2 ,p a
'wc4': tf.Variable(tf.random_normal([3, 3, 512, 512])),#s 2, p 1
'wc5': tf.Variable(tf.random_normal([3, 3, 512, 384])),#s 2, p 1
'wd1': tf.Variable(tf.random_normal([8*8*384, 4096])), # fully connected, 7*7*64 inputs, 1024 outputs
'wd2': tf.Variable(tf.random_normal([4096, 4096])), # fully connected, 7*7*64 inputs, 1024 outputs
'out': tf.Variable(tf.random_normal([4096, n_classes])) # 1024 inputs, 10 outputs (class prediction)
}
biases = {
'bc1': tf.Variable(tf.random_normal([96])),
'bc2': tf.Variable(tf.random_normal([384])),
'bc3': tf.Variable(tf.random_normal([512])),
'bc4': tf.Variable(tf.random_normal([512])),
'bc5': tf.Variable(tf.random_normal([384])),
'bd1': tf.Variable(tf.random_normal([4096])),
'bd2': tf.Variable(tf.random_normal([4096])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
def train_next_batch(batch_size):
temp_data=np.ndarray(shape=(batch_size,227,227,3),dtype=float)
temp_class=np.ndarray(shape=(batch_size,n_classes),dtype=float)
for idx,x in enumerate(train_data[train_i:train_i+batch_size]):
temp_data[idx,:,:,:]=resize_im(cv2.imread(x,1),227,227)
temp_class[idx,:]=create_class_vec(train_class[train_i+idx],101)
return temp_data,temp_class
pred = vgg_single_frame(x, weights, biases, keep_prob)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
#
# cost = -tf.reduce_sum(y*tf.log(pred))
# optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
# accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
step = 1
# Keep training until reach max iterations
while step * batch_size < training_iters:
batch_xs, batch_ys = train_next_batch(batch_size)
# Fit training using batch data
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout})
if step % display_step == 0:
# Calculate batch accuracy
acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
# Calculate batch loss
loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc)
step += 1
print "Optimization Finished!"
# Calculate accuracy for 256 mnist test images
print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.})
出力をザビエル使用する方法はあり
Total memory: 12.00GiB
Free memory: 10.77GiB
I tensorflow/core/common_runtime/gpu/gpu_init.cc:126] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_init.cc:136] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:717] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX TITAN X, pci bus id: 0000:03:00.0)
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 1.0KiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 2.0KiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 4.0KiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 8.0KiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 16.0KiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 32.0KiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 64.0KiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 128.0KiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 256.0KiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 512.0KiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 1.00MiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 2.00MiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 4.00MiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 8.00MiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 16.00MiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 32.00MiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 64.00MiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 128.00MiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 256.00MiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 512.00MiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 1.00GiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 2.00GiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 4.00GiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 8.00GiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:51] Creating bin of max chunk size 16.00GiB
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:73] Allocating 10.23GiB bytes.
I tensorflow/core/common_runtime/gpu/gpu_bfc_allocator.cc:83] GPU 0 memory begins at 0xb06c80000 extends to 0xd9579bb34
Iter 1280, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 2560, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 3840, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 5120, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 6400, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 7680, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 8960, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 10240, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 11520, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 12800, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 14080, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 15360, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 16640, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 17920, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 19200, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 20480, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 21760, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 23040, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 24320, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 25600, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 26880, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 28160, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 29440, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 30720, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 32000, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 33280, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 34560, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 35840, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 37120, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 38400, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 39680, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 40960, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 42240, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 43520, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 44800, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 46080, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 47360, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 48640, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 49920, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 51200, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 52480, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 53760, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 55040, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 56320, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 57600, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 58880, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 60160, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 61440, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 62720, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 64000, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 65280, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 66560, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 67840, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 69120, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 70400, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 71680, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 72960, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 74240, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 75520, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 76800, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 78080, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 79360, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 80640, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 81920, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 83200, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 84480, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 85760, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 87040, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 88320, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 89600, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 90880, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 92160, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 93440, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 94720, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 96000, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 97280, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 98560, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 99840, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 101120, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 102400, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 103680, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 104960, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 106240, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 107520, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 108800, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 110080, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 111360, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 112640, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 113920, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 115200, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 116480, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 117760, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 119040, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 120320, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 121600, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 122880, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 124160, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 125440, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 126720, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 128000, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 129280, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 130560, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 131840, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 133120, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 134400, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 135680, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 136960, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 138240, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 139520, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 140800, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 142080, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 143360, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 144640, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 145920, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 147200, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 148480, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 149760, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 151040, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 152320, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 153600, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 154880, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 156160, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 157440, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 158720, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 160000, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 161280, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 162560, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 163840, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 165120, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 166400, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 167680, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 168960, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 170240, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 171520, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 172800, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 174080, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 175360, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 176640, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 177920, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 179200, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 180480, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 181760, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 183040, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 184320, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 185600, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 186880, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 188160, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 189440, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 190720, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 192000, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 193280, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 194560, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 195840, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 197120, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 198400, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Iter 199680, Minibatch Loss= 4.631989, Training Accuracy= 0.00000
Optimization Finished!
問題のアーキテクチャが悪いだけではないことをどのように知っていますか? –
私はcaffeで同じネットワークを実装し、59%の精度を与えました...したがって、私はそれが問題ではないと思っています..しかし多分実装エラー...私には何かを持っているかどうか教えてください –
便利なデバッグ手法各ステップで元のモデルとグラジエントを比較することです、あなたは 'optimizer.compute_gradients'を使ってグラジエントを得ることができます –