-1
を使ってPythonに画像データセットをロードすることができ...ない私はそれは私にエラーを示しているtflearn を使ってPythonに画像データセットをロードすることはできませんよtflearn
TypeError: image_preloader() got an unexpected keyword argument 'categorical_lables'
は、コード..です
from __future__ import division, print_function, absolute_import
import tflearn
import tensorflow as tf
from tflearn.data_utils import shuffle
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.estimator import regression
from tflearn.data_preprocessing import ImagePreprocessing
from tflearn.data_augmentation import ImageAugmentation
import pickle
dataset_file = 'data.txt'
from tflearn.data_utils import image_preloader
X,Y=image_preloader(dataset_file, image_shape=(100,100),mode=file,categorical_lables=True,normalize=True)
img_prep = ImagePreprocessing()
img_prep.add_featurewise_zero_center()
img_prep.add_featurewise_stdnorm()
network = input_data(shape=[None, 32, 32, 3],
data_preprocessing=img_prep,
data_augmentation=img_aug)
network = conv_2d(network, 32, 3, activation='relu')
network = max_pool_2d(network, 2)
network = conv_2d(network, 64, 3, activation='relu')
network = conv_2d(network, 64, 3, activation='relu')
network = max_pool_2d(network, 2)
network = fully_connected(network, 512, activation='relu')
network = dropout(network, 0.5)
network = fully_connected(network, 2, activation='softmax')
network = regression(network, optimizer='adam',
loss='categorical_crossentropy',
learning_rate=0.001)
model = tflearn.DNN(network, tensorboard_verbose=0, checkpoint_path='bird-classifier.tfl.ckpt')
model.fit(X, Y, n_epoch=100, shuffle=True, validation_set=(X_test, Y_test),
show_metric=True, batch_size=96,
snapshot_epoch=True,
run_id='bird-classifier')
とdata.txtをファイルconstains /パス/に/画像クラス
例img1.jpeg 0 img2.jpeg 1 。 。 。 。 。 。 。
私はそれを確認しました....スペルミスの間違いはありません。 –
それでもまだ動作しない場合は、別のエラーが発生するはずです。あなたが投稿したコードでは、 'categorical_labels'が予想されるとき' categorical_lables = True'を 'image_preloader'に渡します。これは予期しないキーワードエラーを引き起こしています。 – cullywest