Ubuntu 14.04で動作するNvidia GTX 1080があります。私はtensorflow 1.0.1を使用して畳み込みオートエンコーダーを実装しようとしていますが、プログラムはGPUをまったく使用していないようです。私はこれをwatch nvidia-smi
とhtop
を使って確認しました。次のようにプログラムを実行した後、出力は次のようになります。GPUを使用しないテンソルフローコード
1 I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcublas.so.8.0 locally
2 I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcudnn.so.5 locally
3 I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcufft.so.8.0 locally
4 I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcuda.so.1 locally
5 I tensorflow/stream_executor/dso_loader.cc:135] successfully opened CUDA library libcurand.so.8.0 locally
6 Extracting MNIST_data/train-images-idx3-ubyte.gz
7 Extracting MNIST_data/train-labels-idx1-ubyte.gz
8 Extracting MNIST_data/t10k-images-idx3-ubyte.gz
9 Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
10 getting into solving the reconstruction loss
11 Dimension of z i.e. our latent vector is [None, 100]
12 Dimension of the output of the decoder is [100, 28, 28, 1]
13 W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
14 W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are availab le on your machine and could speed up CPU computations.
15 W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are availab le on your machine and could speed up CPU computations.
16 W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
17 W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
18 W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
19 I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 0 with properties:
20 name: GeForce GTX 1080
21 major: 6 minor: 1 memoryClockRate (GHz) 1.7335
22 pciBusID 0000:0a:00.0
23 Total memory: 7.92GiB
24 Free memory: 7.81GiB
25 W tensorflow/stream_executor/cuda/cuda_driver.cc:590] creating context when one is currently active; existing: 0x34bccc0
26 I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 1 with properties:
27 name: GeForce GTX 1080
28 major: 6 minor: 1 memoryClockRate (GHz) 1.7335
29 pciBusID 0000:09:00.0
30 Total memory: 7.92GiB
31 Free memory: 7.81GiB
32 W tensorflow/stream_executor/cuda/cuda_driver.cc:590] creating context when one is currently active; existing: 0x34c0940
33 I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 2 with properties:
34 name: GeForce GTX 1080
35 major: 6 minor: 1 memoryClockRate (GHz) 1.7335
36 pciBusID 0000:06:00.0
37 Total memory: 7.92GiB
38 Free memory: 7.81GiB
39 W tensorflow/stream_executor/cuda/cuda_driver.cc:590] creating context when one is currently active; existing: 0x34c45c0
40 I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 3 with properties:
41 name: GeForce GTX 1080
42 major: 6 minor: 1 memoryClockRate (GHz) 1.7335
43 pciBusID 0000:05:00.0
44 Total memory: 7.92GiB
45 Free memory: 7.81GiB
46 I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0 1 2 3
47 I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0: Y Y Y Y
48 I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 1: Y Y Y Y
49 I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 2: Y Y Y Y
50 I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 3: Y Y Y Y
51 I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080, pci bus i d: 0000:0a:00.0)
52 I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:1) -> (device: 1, name: GeForce GTX 1080, pci bus i d: 0000:09:00.0)
53 I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:2) -> (device: 2, name: GeForce GTX 1080, pci bus i d: 0000:06:00.0)
54 I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:3) -> (device: 3, name: GeForce GTX 1080, pci bus i d: 0000:05:00.0)
私のコードで問題がある可能性があります、私はまた、グラフを作成する前にwith tf.device("/gpu:0"):
を使用して特定のデバイスを使用することを指定しようとしています。さらなる情報が必要な場合はお知らせください。ホテルトップ
[email protected]:~$ nvidia-smi
Wed Apr 19 20:50:07 2017
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 367.48 Driver Version: 367.48 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GTX 1080 Off | 0000:05:00.0 Off | N/A |
| 38% 54C P8 12W/180W | 7715MiB/8113MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 GeForce GTX 1080 Off | 0000:06:00.0 Off | N/A |
| 38% 55C P8 8W/180W | 7715MiB/8113MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 GeForce GTX 1080 Off | 0000:09:00.0 Off | N/A |
| 36% 50C P8 8W/180W | 7715MiB/8113MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 3 GeForce GTX 1080 Off | 0000:0A:00.0 Off | N/A |
| 35% 54C P2 41W/180W | 7833MiB/8113MiB | 8% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 24228 C python3 7713MiB |
| 1 24228 C python3 7713MiB |
| 2 24228 C python3 7713MiB |
| 3 24228 C python3 7831MiB |
+-----------------------------------------------------------------------------+
NVIDIA-SMIの
編集1出力は、CPUコアの一方の周りに100%を使用していることを示しています。 gpuを使用していないと言う私の根拠は、GPU使用率のためです。これは8%を示しましたが、通常は0%です。
4つのGPUが見つかったようですが、出力に異常は見られません。 'tf.device("/gpu:0 ")'を指定する必要はありません。トレーニング中にすべてのCPUが使用されていますか? nvidia-smiの出力を貼り付けることはできますか?あなたはnividia-smiの出力でPythonのプロセスを見ますか?それともGPUの使用率は0%ですか? –
@DavidParks nvidia-smiの出力を追加しました。そして、pythonのプロセスがあります。 –