'from'と 'to'は、次の行から '現在の'行までの値を 'シフト'することで生成できます。
# get a df with nodes
nodes <- dt_stops[, .(stop_id, stop_lon, stop_lat)]
# links beetween stops
links <- dt_stop_times[,.(stop_id, stop_id_to, trip_id)]
# create graph
g <- graph_from_data_frame(links , directed=TRUE, vertices=nodes)
マインド:そして停止情報は、単に
あなただけにする必要graph_from_data_frame{igraph}
使用するように、今、私は例を挙げて説明しましょう、とlibrary(data.table)
## here I"m using Melbourne's GTFS ("http://transitfeeds.com/p/ptv/497/latest/download")
#dt_stop_times <- lst[[6]]$stop_times
#dt_stops <- lst[[7]]$stops
#setDT(dt_stop_times)
#setDT(dt_stops)
## join on whatever stop information you want
dt_stop_times <- dt_stop_times[ dt_stops, on = c("stop_id"), nomatch = 0]
## set the order of stops for each group (in this case, each group is a trip_id)
setorder(dt_stop_times, trip_id, stop_sequence)
## create a new column by shifting the stop_id of the following row up
dt_stop_times[, stop_id_to := shift(stop_id, type = "lead"), by = .(trip_id)]
## you will have NAs at this point because the last stop doesn't go anywhere.
## you can do the same operation on multiple columns at the same time
dt_stop_times[, `:=`(stop_id_to = shift(stop_id, type = "lead"),
arrival_time_stop_to = shift(arrival_time, type = "lead"),
departure_time_stop_to = shift(departure_time, type = "lead")),
by = .(trip_id)]
## now you have your 'from' and 'to' columns from which you can make your igraph
## here's a subset of the result
dt_stop_times[, .(trip_id, stop_id, stop_name_from = stop_name, arrival_time, stop_id_to, arrival_time_stop_to)]
# trip_id stop_id stop_name_from arrival_time stop_id_to
# 1: 1.T0.3-86-A-mjp-1.7.R 4174 71-RMIT/Plenty Rd (Bundoora) 25:42:00 4485
# 2: 1.T0.3-86-A-mjp-1.7.R 4485 70-Janefield Dr/Plenty Rd (Bundoora) 25:43:00 4486
# 3: 1.T0.3-86-A-mjp-1.7.R 4486 69-Taunton Dr/Plenty Rd (Bundoora) 25:44:00 4487
# 4: 1.T0.3-86-A-mjp-1.7.R 4487 68-Greenhills Rd/Plenty Rd (Bundoora) 25:45:00 4488
# 5: 1.T0.3-86-A-mjp-1.7.R 4488 67-Bundoora Square SC/Plenty Rd (Bundoora) 25:46:00 4489
# ---
# 9415793: 9999.UQ.3-19-E-mjp-1.1.H 17871 7-Queen Victoria Market/Elizabeth St (Melbourne City) 23:25:00 17873
# 9415794: 9999.UQ.3-19-E-mjp-1.1.H 17873 5-Melbourne Central Station/Elizabeth St (Melbourne City) 23:27:00 17875
# 9415795: 9999.UQ.3-19-E-mjp-1.1.H 17875 3-Bourke Street Mall/Elizabeth St (Melbourne City) 23:30:00 17876
# 9415796: 9999.UQ.3-19-E-mjp-1.1.H 17876 2-Collins St/Elizabeth St (Melbourne City) 23:31:00 17877
# 9415797: 9999.UQ.3-19-E-mjp-1.1.H 17877 1-Flinders Street Railway Station/Elizabeth St (Melbourne City) 23:32:00 NA
# arrival_time_stop_to
# 1: 25:43:00
# 2: 25:44:00
# 3: 25:45:00
# 4: 25:46:00
# 5: 25:47:00
# ---
# 9415793: 23:27:00
# 9415794: 23:30:00
# 9415795: 23:31:00
# 9415796: 23:32:00
# 9415797: NA
の使用に参加することができますしかし、GTFS.zip
ファイルでは、複数の輸送モード(列車、バス、地下鉄など)があり、停車駅のペアの中には、サービス頻度の変動により他のものよりも高い接続性があることがあります。 GTFS.zip
からグラフを作成する際に、これら2つの点をどのように考慮すべきかはまだ分かりません。おそらくは、各エッジをその周波数に従って重み付けし、相互依存層として扱われる各トランスポート・モードで共通するいくつかの停止点を持つ多層ネットワークを構築することが前提です。