私はこれらの特徴とラベルを持っていますが、これは線形解法に満足できるほど線形ではありません。私はsklearnからSVR(カーネル= 'rbf')モデルを訓練しましたが、現在はテンソルフローでそれを行う時間があり、同じかより良い効果を得るために何を書くべきかを言うのは難しいです。Tensorflow。非線形回帰
あなたがそこにいる怠惰なオレンジ色のラインを参照していますか?そのオレンジ色のラインをやる気にさせる方法
import pandas as pd
import numpy as np
import tensorflow as tf
import tqdm
import matplotlib.pyplot as plt
from omnicomm_data.test_data import get_model, clean_df
import os
from sklearn import preprocessing
graph = tf.get_default_graph()
# tf variables
x_ = tf.placeholder(name="input", shape=[None, 1], dtype=np.float32)
y_ = tf.placeholder(name="output", shape=[None, 1], dtype=np.float32)
w = tf.Variable(tf.random_normal([]), name='weight')
b = tf.Variable(tf.random_normal([]), name='bias')
lin_model = tf.add(tf.multiply(x_, w), b)
#loss
loss = tf.reduce_mean(tf.pow(lin_model - y_, 2), name='loss')
train_step = tf.train.GradientDescentOptimizer(0.000000025).minimize(loss)
#nonlinear part
nonlin_model = tf.tanh(tf.add(tf.multiply(x_, w), b))
nonlin_loss = tf.reduce_mean(tf.pow(nonlin_model - y_, 2), name='cost')
train_step_nonlin = tf.train.GradientDescentOptimizer(0.000000025).minimize(nonlin_loss)
# pandas data
df_train = pd.read_csv('me_rate.csv', header=None)
liters = df_train.iloc[:, 0].values.reshape(-1, 1)
parrots = df_train.iloc[:, 1].values.reshape(-1, 1)
#model for prediction
mms = preprocessing.MinMaxScaler()
rbf = get_model(path_to_model)
n_epochs = 200
train_errors = []
non_train_errors = []
test_errors = []
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in tqdm.tqdm(range(n_epochs)):
_, train_err, summ = sess.run([train_step, loss, summaries],
feed_dict={x_: parrots, y_: liters})
summary_writer.add_summary(summ, i)
train_errors.append(train_err)
_, non_train_err, = sess.run([train_step_nonlin, nonlin_loss],
feed_dict={x_: parrots, y_: liters})
non_train_errors.append(non_train_err)
plt.plot(list(range(n_epochs)), train_errors, label='train_lin')
plt.plot(list(range(n_epochs)), non_train_errors, label='train_nonlin')
plt.legend()
print(train_errors[:10])
print(non_train_errors[:10])
plt.show()
plt.scatter(parrots, liters, label='actual data')
plt.plot(parrots, sess.run(lin_model, feed_dict={x_: parrots}), label='linear (tf)')
plt.plot(parrots, sess.run(nonlin_model, feed_dict={x_: parrots}), label='nonlinear (tf)')
plt.plot(parrots, rbf.predict(mms.fit_transform(parrots)), label='rbf (sklearn)')
plt.legend()
plt.show()
:それは決意
コードそのものであなたを満たしていませんか?
Part After。我々は(RBFとしてかなり良いではないが、そのはちょうどより多くの作業が必要)オレンジ色のラインのためのいくつかの改善を得た
import pandas as pd
import numpy as np
import tensorflow as tf
import tqdm
import matplotlib.pyplot as plt
from omnicomm_data.test_data import get_model
import os
from sklearn import preprocessing
graph = tf.get_default_graph()
# tf variables
x_ = tf.placeholder(name="input", shape=[None, 1], dtype=np.float32)
y_ = tf.placeholder(name="output", shape=[None, 1], dtype=np.float32)
w = tf.Variable(tf.random_normal([]), name='weight')
b = tf.Variable(tf.random_normal([]), name='bias')
# nonlinear
nonlin_model = tf.add(tf.multiply(tf.tanh(x_), w), b)
nonlin_loss = tf.reduce_mean(tf.pow(nonlin_model - y_, 2), name='cost')
train_step_nonlin = tf.train.GradientDescentOptimizer(0.01).minimize(nonlin_loss)
# pandas data
df_train = pd.read_csv('me_rate.csv', header=None)
liters = df_train.iloc[:, 0].values.reshape(-1, 1)
parrots = df_train.iloc[:, 1].values.reshape(-1, 1)
#model for prediction
mms = preprocessing.MinMaxScaler()
rbf = get_model(path_to_model)
nz = preprocessing.MaxAbsScaler() # normalization coz tanh
norm_parrots = nz.fit_transform(parrots)
print(norm_parrots)
n_epochs = 20000
train_errors = []
non_train_errors = []
test_errors = []
weights = []
biases = []
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in tqdm.tqdm(range(n_epochs)):
_, non_train_err, weight, bias = sess.run([train_step_nonlin, nonlin_loss, w, b],
feed_dict={x_: norm_parrots, y_: liters})
non_train_errors.append(non_train_err)
weights.append(weight)
biases.append(bias)
plt.scatter(norm_parrots, liters, label='actual data')
plt.plot(norm_parrots, sess.run(nonlin_model, feed_dict={x_: norm_parrots}), c='orange', label='nonlinear (tf)')
plt.plot(norm_parrots, rbf.predict(mms.fit_transform(parrots)), label='rbf (sklearn)')
plt.legend()
plt.show()
コードが見えます。
これは非常に良いです!しかし、あなたはSOの構造を保つために質問への実際の答えに答えを入れてください:) – OneHoopyFrood