2017-04-02 11 views
0

ここでは分類タスクがあり、ニューラルネットとROCRパッケージを使用する必要があります。問題は、予測関数を使用するとエラーメッセージが表示されることです。ここで ニューラルネットとROCRパッケージを使用してニューラルネット曲線をプロット

は私のコードです:

#load packages 
require(neuralnet) 
library(ROCR) 

#create data set 
train<-read.table(file="train.txt",header=TRUE,sep=",") 
test<- read.table(file="test.txt",header=TRUE,sep=",") 

#build model and make predictions 
nn.sag <- neuralnet(Type ~ Area+Perimeter+Compactness+Length+Width+Asymmetry+Groove, data = train, hidden = 5, algorithm = "sag", err.fct = "sse", linear.output = FALSE) 

prob = compute(nn.sag, test[, -ncol(test)]) 
prob.result <- prob$net.result 

nn.pred = prediction(prob.result, test$Type) 
pref <- performance(nn.pred, "tpr", "fpr") 
plot(pref) 

そしてここで私は、「予測」関数のエラーメッセージました:

データセット「$演算子は、原子のベクトルには無効である」(だけのように見えるがここでトレーニングデータセット):

Area,Perimeter,Compactness,Length,Width,Asymmetry,Groove,Type 
14.8,14.52,0.8823,5.656,3.288,3.112,5.309,1 
14.79,14.52,0.8819,5.545,3.291,2.704,5.111,1 
14.99,14.56,0.8883,5.57,3.377,2.958,5.175,1 
19.14,16.61,0.8722,6.259,3.737,6.682,6.053,0 
15.69,14.75,0.9058,5.527,3.514,1.599,5.046,1 
14.11,14.26,0.8722,5.52,3.168,2.688,5.219,1 
13.16,13.55,0.9009,5.138,3.201,2.461,4.783,1 
16.16,15.33,0.8644,5.845,3.395,4.266,5.795,0 
15.01,14.76,0.8657,5.789,3.245,1.791,5.001,1 
14.11,14.1,0.8911,5.42,3.302,2.7,5,1 
17.98,15.85,0.8993,5.979,3.687,2.257,5.919,0 
21.18,17.21,0.8989,6.573,4.033,5.78,6.231,0 
14.29,14.09,0.905,5.291,3.337,2.699,4.825,1 
14.59,14.28,0.8993,5.351,3.333,4.185,4.781,1 
11.42,12.86,0.8683,5.008,2.85,2.7,4.607,1 
12.11,13.47,0.8392,5.159,3.032,1.502,4.519,1 
15.6,15.11,0.858,5.832,3.286,2.725,5.752,0 
15.38,14.66,0.899,5.477,3.465,3.6,5.439,0 
18.94,16.49,0.875,6.445,3.639,5.064,6.362,0 
12.36,13.19,0.8923,5.076,3.042,3.22,4.605,1 
14.01,14.29,0.8625,5.609,3.158,2.217,5.132,1 
17.12,15.55,0.8892,5.85,3.566,2.858,5.746,0 
15.78,14.91,0.8923,5.674,3.434,5.593,5.136,1 
16.19,15.16,0.8849,5.833,3.421,0.903,5.307,1 
14.43,14.4,0.8751,5.585,3.272,3.975,5.144,1 
13.8,14.04,0.8794,5.376,3.155,1.56,4.961,1 
14.46,14.35,0.8818,5.388,3.377,2.802,5.044,1 
18.59,16.05,0.9066,6.037,3.86,6.001,5.877,0 
18.75,16.18,0.8999,6.111,3.869,4.188,5.992,0 
15.49,14.94,0.8724,5.757,3.371,3.412,5.228,1 
12.73,13.75,0.8458,5.412,2.882,3.533,5.067,1 
13.5,13.85,0.8852,5.351,3.158,2.249,5.176,1 
14.38,14.21,0.8951,5.386,3.312,2.462,4.956,1 
14.86,14.67,0.8676,5.678,3.258,2.129,5.351,1 
18.45,16.12,0.8921,6.107,3.769,2.235,5.794,0 
17.32,15.91,0.8599,6.064,3.403,3.824,5.922,0 
20.2,16.89,0.8894,6.285,3.864,5.173,6.187,0 
20.03,16.9,0.8811,6.493,3.857,3.063,6.32,0 
18.14,16.12,0.8772,6.059,3.563,3.619,6.011,0 
13.99,13.83,0.9183,5.119,3.383,5.234,4.781,1 
15.57,15.15,0.8527,5.92,3.231,2.64,5.879,0 
16.2,15.27,0.8734,5.826,3.464,2.823,5.527,1 
20.97,17.25,0.8859,6.563,3.991,4.677,6.316,0 
14.16,14.4,0.8584,5.658,3.129,3.072,5.176,1 
13.45,14.02,0.8604,5.516,3.065,3.531,5.097,1 
15.5,14.86,0.882,5.877,3.396,4.711,5.528,1 
16.77,15.62,0.8638,5.927,3.438,4.92,5.795,0 
12.74,13.67,0.8564,5.395,2.956,2.504,4.869,1 
14.88,14.57,0.8811,5.554,3.333,1.018,4.956,1 
14.28,14.17,0.8944,5.397,3.298,6.685,5.001,1 
14.34,14.37,0.8726,5.63,3.19,1.313,5.15,1 
14.03,14.16,0.8796,5.438,3.201,1.717,5.001,1 
19.11,16.26,0.9081,6.154,3.93,2.936,6.079,0 
14.52,14.6,0.8557,5.741,3.113,1.481,5.487,1 
18.43,15.97,0.9077,5.98,3.771,2.984,5.905,0 
18.81,16.29,0.8906,6.272,3.693,3.237,6.053,0 
13.78,14.06,0.8759,5.479,3.156,3.136,4.872,1 
14.69,14.49,0.8799,5.563,3.259,3.586,5.219,1 
18.85,16.17,0.9056,6.152,3.806,2.843,6.2,0 
12.88,13.5,0.8879,5.139,3.119,2.352,4.607,1 
12.78,13.57,0.8716,5.262,3.026,1.176,4.782,1 
14.33,14.28,0.8831,5.504,3.199,3.328,5.224,1 
19.46,16.5,0.8985,6.113,3.892,4.308,6.009,0 
19.38,16.72,0.8716,6.303,3.791,3.678,5.965,0 
15.26,14.85,0.8696,5.714,3.242,4.543,5.314,1 
20.24,16.91,0.8897,6.315,3.962,5.901,6.188,0 
19.94,16.92,0.8752,6.675,3.763,3.252,6.55,0 
20.71,17.23,0.8763,6.579,3.814,4.451,6.451,0 
16.17,15.38,0.8588,5.762,3.387,4.286,5.703,0 
13.02,13.76,0.8641,5.395,3.026,3.373,4.825,1 
16.53,15.34,0.8823,5.875,3.467,5.532,5.88,0 
13.89,14.02,0.888,5.439,3.199,3.986,4.738,1 
18.98,16.57,0.8687,6.449,3.552,2.144,6.453,0 
17.08,15.38,0.9079,5.832,3.683,2.956,5.484,1 
15.03,14.77,0.8658,5.702,3.212,1.933,5.439,1 
16.14,14.99,0.9034,5.658,3.562,1.355,5.175,1 
18.65,16.41,0.8698,6.285,3.594,4.391,6.102,0 
20.1,16.99,0.8746,6.581,3.785,1.955,6.449,0 
17.99,15.86,0.8992,5.89,3.694,2.068,5.837,0 
15.88,14.9,0.8988,5.618,3.507,0.7651,5.091,1 
13.22,13.84,0.868,5.395,3.07,4.157,5.088,1 
18.3,15.89,0.9108,5.979,3.755,2.837,5.962,0 
19.51,16.71,0.878,6.366,3.801,2.962,6.185,0 

答えて

0

prediction()関数はそうtogeth両方のパッケージをロードしませんR.でneuralnetとROCRパッケージの両方で提供されていますエル。最初にニューラルネットをロードし、モデルを訓練した後、detach()を使用して取り外し、ROCRパッケージをロードします。次のコードを試してください:

#load packages 
require(neuralnet) 

#create data set 
train<-read.table(file="train.txt",header=TRUE,sep=",") 
test<- read.table(file="test.txt",header=TRUE,sep=",") 

#build model and make predictions 
nn.sag <- neuralnet(Type ~ Area+Perimeter+Compactness+Length+Width+Asymmetry+Groove, data = train, hidden = 5, algorithm = "sag", err.fct = "sse", linear.output = FALSE) 

prob = compute(nn.sag, test[, -ncol(test)]) 
prob.result <- prob$net.result 

detach(package:neuralnet,unload = T) 

library(ROCR) 
nn.pred = prediction(prob.result, test$Type) 
pref <- performance(nn.pred, "tpr", "fpr") 
plot(pref) 
関連する問題