テンソルフローによって完全に接続されたニュートラルネットワークを構築したいと思います。テンソルフローを使用して完全に接続されたニュートラルネットワークを構築することを学ぶとエラーが発生しました
import tensorflow as tf
from sklearn.metrics import confusion_matrix
import numpy as np
import load
def get_chunk(samples, labels, chunkSize):
if len(samples) != len(labels):
raise Exception('dataset is wrong!!!!!')
print(np.shape(labels))
stepStart = 0
i = 0
while stepStart < len(samples):
stepEnd = stepStart + chunkSize
if stepEnd < len(samples):
print('==================this is the shape of placeholder======================')
print(np.shape(labels[stepStart: stepEnd]))
print('------------------------------------------------------------------------')
yield i, samples[stepStart:stepEnd], labels[stepStart: stepStart]
print('========================================================================')
i += 1
stepStart = stepEnd
class Network():
def __init__(self, num_hidden, batch_size):
self.batch_size = batch_size
self.test_batch_size = 500
self.num_hidden = num_hidden
self.image_size = load.image_size
self.num_channels = 1
self.graph = tf.Graph()
self.tf_train_samples = None
self.tf_train_labels = None
self.tf_test_samples = None
self.tf_test_labels = None
def define_graph(self):
with self.graph.as_default():
self.tf_train_samples = tf.placeholder(tf.float32, shape=(self.batch_size, image_size, image_size, num_channels) )
#self.tf_train_samples = tf.placeholder(tf.float32, shape=(self.batch_size, image_size, image_size, num_channels))
self.tf_train_labels = tf.placeholder(tf.float32, shape=(self.batch_size, num_labels) )
self.tf_test_samples = tf.placeholder(tf.float32, shape=(self.test_batch_size, image_size, image_size, num_channels) )
fc1_weights = tf.Variable(tf.truncated_normal([image_size*image_size, self.num_hidden], stddev=0.1) )
fc1_biases = tf.Variable(tf.constant(0.1, shape=[self.num_hidden]) )
fc2_weights = tf.Variable(tf.truncated_normal([self.num_hidden, num_labels], stddev=0.1) )
fc2_biases = tf.Variable(tf.constant(0.1, shape=[num_labels]) )
def model(data):
shape = data.get_shape().as_list()
print('this is model() ============================================')
print(data.get_shape(), shape)
reshape = tf.reshape(data, [shape[0], shape[1]*shape[2]*shape[3]])
print(reshape.get_shape(), fc1_weights.get_shape(), fc1_biases.get_shape())
print('model ended ================================================')
hidden = tf.nn.relu(tf.matmul(reshape, fc1_weights) + fc1_biases )
return tf.matmul(hidden, fc2_weights) + fc2_biases
logits = model(self.tf_train_samples)
self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=self.tf_train_labels))
self.optimizer = tf.train.GradientDescentOptimizer(0.0001).minimize(self.loss)
self.train_prediction = tf.nn.softmax(logits)
self.test_prediction = tf.nn.softmax(model(self.tf_test_samples) )
def run(self):
self.session = tf.Session(graph=self.graph)
with self.session as session:
tf.initialize_all_variables().run()
#tf.global_variables_initializer().run()
print('start Training')
for i, samples, labels in get_chunk(train_samples, train_labels, chunkSize=self.batch_size ):
print('this is the start of get placeholder')
_, l, predictions = session.run(
[self.optimizer, self.loss, self.train_prediction],
feed_dict={ self.tf_train_samples:samples, self.tf_train_labels:labels}
)
accuracy, _ = self.accuracy(predictions, labels)
if i % 50 == 0:
print('accuracy:'+str(accuracy))
def accuracy(self, predictions, labels, need_confusion_matrix = False):
#pass
_predictions = np.argmax(predictions, 1)
_labels = np.argmax(labels, 1)
cm = confusion_matrix(_labels, _predictions) if need_confusion_matrix else None
accuracy = (100.0*np.sum(_predictions == labels)/print.shape[0])
return accuracy, cm
if __name__ == '__main__':
train_samples, train_labels = load._train_samples, load._train_labels
test_samples, test_labels = load._test_samples, load._test_labels
print('Training set', train_samples.shape, train_labels.shape)
print(' Test set', test_samples.shape, test_labels.shape)
image_size = load.image_size
num_labels = load.num_labels
num_channels = 1#load.channels
net = Network(num_hidden=128, batch_size=100)
net.define_graph()
net.run()
と私は、コードを実行すると、それはこのようなエラーを与える:それは私が間違っているプレースホルダを使用する意味
[email protected]:~/code/number_test$ python bp.py
Training set (73257, 32, 32, 1) (73257, 10)
Test set (26032, 32, 32, 1) (26032, 10)
this is model() ============================================
(100, 32, 32, 1) [100, 32, 32, 1]
(100, 1024) (1024, 128) (128,)
model ended ================================================
this is model() ============================================
(500, 32, 32, 1) [500, 32, 32, 1]
(500, 1024) (1024, 128) (128,)
model ended ================================================
2017-05-27 13:48:07.343556: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-05-27 13:48:07.343640: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-05-27 13:48:07.343653: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-05-27 13:48:07.343661: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-05-27 13:48:07.343668: W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
WARNING:tensorflow:From bp.py:75: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.
start Training
(73257, 10)
==================this is the shape of placeholder======================
(100, 10)
------------------------------------------------------------------------
this is the start of get placeholder
Traceback (most recent call last):
File "bp.py", line 110, in <module>
net.run()
File "bp.py", line 83, in run
feed_dict={ self.tf_train_samples:samples, self.tf_train_labels:labels}
File "/home/panda/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 778, in run
run_metadata_ptr)
File "/home/panda/anaconda3/lib/python3.6/site-packages/tensorflow/python/client/session.py", line 961, in _run
% (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape())))
ValueError: Cannot feed value of shape (0, 10) for Tensor 'Placeholder_1:0', which has shape '(100, 10)'
[email protected]:~/code/number_test$
Iguess、私はこのgithubの enter link description hereからプログラムを学び、私はいくつかのコードをcopyedここでは、私はそれを実行するので、環境の問題ではありませんが、私は間違っていた場所について別のものを見つけることができません、誰かが私にいくつかの助けを与えることができる場合。
私の推測では、ローダーがサンプルを正しく読み込まないということです。あなたはサンプルの形をプリントアウトして見てください。 – Jason
このコード情報はありませんトレーニングセット(73257,32,32,1)(73257,10) テストセット(26032,32,32,1)(26032,10)は負荷から読み込まれたデータであり、私はgithubからこのコードを学ぶので、適切なコードを実行できるので、ロードムーデルが正しいと約束します。問題はこの問題のコードにあります。 – panda404