2017-05-01 19 views
0

私は時系列データのマルチクラス分類のためにConv1Dを初めて使用しようとしています。それ。予想されるdense_1は2次元ですが、形状(308,1,6)の配列を持っています

import numpy as np 
import os 

import keras 
from keras.models import Sequential 
from keras.layers import Conv1D, Dense, TimeDistributed, MaxPooling1D, Flatten 

# fix random seed for reproducibility 
np.random.seed(7) 

dataset1 = np.genfromtxt(os.path.join('data', 'norm_cellcycle_384_17.txt'), delimiter=',', dtype=None) 
data = dataset1[1:] 

# extract columns 
genes = data[:,0] 
y_all = data[:,1].astype(int) 
x_all = data[:,2:-1].astype(float) 

# deleted this line when using sparse_categorical_crossentropy 
# 384x6 
y_all = keras.utils.to_categorical(y_all) 

# 5 
num_classes = np.unique(y_all).shape[0] 

# split entire data into train set and test set 
validation_split = 0.2 

val_idx = np.random.choice(range(x_all.shape[0]), int(validation_split*x_all.shape[0]), replace=False) 
train_idx = [x for x in range(x_all.shape[0]) if x not in val_idx] 

x_train = x_all[train_idx] 
y_train = y_all[train_idx] 

# 308x17x1 
x_train = x_train[:, :, np.newaxis] 
# 308x1 
y_train = y_train[:,np.newaxis] 

x_test = x_all[val_idx] 
y_test = y_all[val_idx] 

# deleted this line when using sparse_categorical_crossentropy 
y_test = keras.utils.to_categorical(y_test) 

# 76x17x1 
x_test = x_test[:, :, np.newaxis] 
# 76x1 
y_test = y_test[:,np.newaxis] 


print(x_train.shape[0],'train samples') 
print(x_test.shape[0],'test samples') 


# Create Model 
# number of filters for 1D conv 
nb_filter = 4 
filter_length = 5 

window = x_train.shape[1] 
model = Sequential() 

model.add(Conv1D(filters=nb_filter,kernel_size=filter_length,activation="relu", input_shape=(window,1))) 
model.add(MaxPooling1D()) 
model.add(Conv1D(nb_filter=nb_filter, filter_length=filter_length, activation='relu')) 
model.add(MaxPooling1D()) 
model.add(Flatten()) 
model.add(Dense(num_classes, activation='softmax')) 
model.summary() 
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam', metrics=['accuracy']) 

model.fit(x_train, y_train, epochs=25, batch_size=2, validation_data=(x_test, y_test)) 

なぜこのエラーが発生するのか分かりません。 binary_crossentropyの損失とy_allのホットエンコーディングを使用しないと、私のモデルが動作します。しかし、私はy_allにcategorical_crossentropyの損失を伴う1つのホットエンコーディングを使用すると失敗します。 1つのホットエンコーディングを使用しない場合、kerasはy_allを1のバイナリマトリックスに変更するエラーを投げます。 アレイ内で(1,6)がどこから来ているのかわかりません。

ValueError: Error when checking model target: expected dense_1 to have 2 dimensions, but got array with shape (308, 1, 6)

助けてください!私は何時間もこれに固執してきました!すでに関連するすべての質問を行ったが、それでも意味をなさない。

アップデート:整数サポートがあるので、sparse_categorical_crossentropyを使用します。私は上記のコードからto_categorical行を削除し、私はこの新しいエラーが発生します。

InvalidArgumentError (see above for traceback): Received a label value of 5 which is outside the valid range of [0, 5). Label values: 2 5
[[Node: SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits = SparseSoftmaxCrossEntropyWithLogits[T=DT_FLOAT, Tlabels=DT_INT64, _device="/job:localhost/replica:0/task:0/cpu:0"](Reshape_1, Cast)]]

要求されたデータのサンプル:

,Main,Gp,c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15,c16,c17 
YDL179w,1,-0.75808,-0.90319,-0.98935,-0.73995,-0.67193,-0.12777,-0.95307,-1.01656,0.79730,2.11688,1.98537,0.61591,0.56603,-0.13684,-0.52228,-0.05068,0.78823, 
YLR079w,1,-0.48845,-0.70828,-0.47688,-0.65814,-0.45374,-0.47302,-0.71214,-1.02839,0.24048,3.11376,1.28952,0.44874,0.04379,-0.31104,-0.30332,-0.34575,0.82285, 
YER111c,1,-0.42218,0.23887,1.84427,-0.02083,-0.61105,-0.65827,-0.79992,-0.39857,-0.09166,2.03314,1.58457,0.68744,0.14443,-0.72910,-1.46097,-0.82353,-0.51662, 
YBR200w,1,0.09824,0.55258,-0.89641,-1.19111,-1.11744,-0.76133,0.09824,2.16120,1.46126,1.03148,0.67537,-0.33155,-0.60170,-1.39987,-0.42978,-0.15963,0.81045, 
YPL209c,2,-0.65282,-0.32055,2.53702,2.00538,0.60982,0.51014,-0.55314,-1.01832,-0.78573,0.01173,0.07818,-0.05473,-0.22087,0.24432,-0.28732,-1.11801,-0.98510, 
YJL074c,2,-0.81087,-0.19448,1.72941,0.59002,-0.53069,-0.25051,-0.92294,-0.92294,-0.53069,0.08570,1.87884,1.97223,0.45927,-0.36258,-0.34390,-1.07237,-0.77351, 
YNL233w,2,-0.43997,0.66325,2.85098,0.74739,-0.42127,-0.47736,-0.79524,-0.80459,-0.48671,-0.21558,1.25226,1.01852,-0.10339,-0.56151,-0.96353,-0.46801,-0.79524, 
YLR313c,2,-0.46611,0.42952,3.01689,1.13856,0.01902,-0.44123,-0.66514,-0.98856,-0.59050,-0.47855,0.84002,0.39220,0.50416,-0.50342,-0.82685,-0.64026,-0.73977, 
YGR041w,2,-0.57187,-0.26687,1.10561,-0.38125,-0.68624,-0.26687,-0.87687,-1.18186,-0.80062,0.60999,2.09686,1.82998,1.14374,0.11437,-0.80062,-0.87687,-0.19062, 
+0

データのサンプルを投稿してください – Pedia

+0

@Pediaは私のデータからいくつかの行を追加しました! – snazziii

答えて

0

だから、私は知っているにもかかわらず、5つのクラスは、このデータセットであることに気づきました何らかの理由でy_allで得られた一意の値が示すように、Keras to_categoricalは6つのクラスがあると考えます。

# 384x6 
y_all = keras.utils.to_categorical(y_all) 

# 5 
num_classes = np.unique(y_all).shape[0] 

私はそれがなぜわかりません。このことを念頭におくと、私はこのコード行を変更し、私のモデルでは、実行するために始めた:

model.add(Dense(num_classes, activation='softmax'))

model.add(Dense(num_classes+1, activation='softmax'))

にto_categoricalはこのように動作し、なぜ私はまだ知りません。誰でも知っていますか?

+0

私はそれが最大の整数値を見ていると思うし、0から0までのクラスを持っていると仮定すると、 – maxymoo

+0

インデックス付けの前提は意味をなさない。しかし、ありがとう! – snazziii

関連する問題