0
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
class Perceptron(object):
def __init__(self, eta=0.01, n_iter=10):
self.eta = eta
self.n_iter = n_iter
def fit(self, X, y):
self.w_ = np.zeros(1 + X.shape[1])
self.errors_ = []
for _ in range(self.n_iter):
errors = 0
for xi, target in zip(X, y):
update = self.eta * (target - self.predict(xi))
self.w_[1:] += update * xi
self.w_[0] += update
errors += int(update != 0.0)
self.errors_.append(errors)
return self
def net_input(self, X):
"""Calculate net input"""
return np.dot(X, self.w_[1:]) + self.w_[0]
def predict(self, X):
"""Return class label after unit step"""
return np.where(self.net_input(X) >= 0.0, 1, -1)
df = pd.read_csv('D:\\TUT\\IRIS_DATA\\iris_data.csv', header=None)
print(df.tail())
y = df.iloc[0:100, 4].values
#print(y)
y = np.where(y == 'Iris-setosa', -1, 1)
#print(y)
X = df.iloc[0:100,0:2].values
print(X)
plt.scatter(X[:50, 0], X[:50,1], label='setosa', color='red', marker='o')
plt.scatter(X[50:100,0], X[50:100, 1], label='versicolor', color='blue',marker='x')
plt.xlabel('petal length')
plt.ylabel('sepal length')
plt.legend()
plt.show()
ppn = Perceptron(0.01, 100)
ppn.fit(X,y)
plt.plot(range(1,len(ppn.errors_)+1), ppn.errors_, marker='o')
plt.xlabel('epoch')
plt.ylabel('Number of misclassification')
plt.show()
上記のコードは本からコピーされていますが、残念ながらエラーはIrisデータでは0に収束していません。エラーは、3.0と2.0の2つの値の間でバウンスしています。 私が間違っている場所を理解するのに役立つ必要があります。PythonのIrisデータが収束しないPerceptronコード
私は機械学習の分野では初心者だと考えてください。どんな洞察も高く評価されます。