Andrew NgのMLコースでグラデーションディセントアルゴリズムを実装しようとしています。データを読み込んだ後、私はいくつかのコンバージェンスを期待して、シータ値のリストを1000回更新して、以下を実装しようとします。Gradient DescentアルゴリズムがHaskellで収束しない
アルゴリズムはgradientDescent
です。私は通常、この問題の原因はアルファが大きすぎることがあることを知っていますが、アルファを例えばn
の係数で変更すると、私の結果はn
の係数で変わります。 iterations
をn
の倍数に変更すると同じことが起こります。私はこれがハケネスの怠惰と関係していると言いたいと思いますが、私は完全にわかりません。どんな助けもありがとう。
module LR1V where
import qualified Data.Matrix as M
import System.IO
import Data.List.Split
import qualified Data.Vector as V
main :: IO()
main = do
contents <- getContents
let lns = lines contents :: [String]
entries = map (splitOn ",") lns :: [[String]]
mbPoints = mapM readPoints entries :: Maybe [[Double]]
case mbPoints of
Just points -> runData points
_ -> putStrLn "Error: it is possible the file is incorrectly formatted"
readPoints :: [String] -> Maybe [Double]
readPoints [email protected](x:y:_) = return $ map read dat
readPoints _ = Nothing
runData :: [[Double]] -> IO()
runData pts = do
let (mxs,ys) = runPoints pts
c = M.ncols mxs
m = M.nrows mxs
thetas = M.zero 1 (M.ncols mxs)
alpha = 0.01
iterations = 1000
results = gradientDescent mxs ys thetas alpha m c iterations
print results
runPoints :: [[Double]] -> (M.Matrix Double, [Double])
runPoints pts = (xs, ys) where
xs = M.fromLists $ addX0 $ map init pts
ys = map last pts
-- X0 will always be 1
addX0 :: [[Double]] -> [[Double]]
addX0 = map (1.0 :)
-- theta is 1xn and x is nx1, where n is the amount of features
-- so it is safe to assume a scalar results from the multiplication
hypothesis :: M.Matrix Double -> M.Matrix Double -> Double
hypothesis thetas x =
M.getElem 1 1 (M.multStd thetas x)
gradientDescent :: M.Matrix Double
-> [Double]
-> M.Matrix Double
-> Double
-> Int
-> Int
-> Int
-> [Double]
gradientDescent mxs ys thetas alpha m n it =
let x i = M.colVector $ M.getRow i mxs
y i = ys !! (i-1)
h i = hypothesis thetas (x i)
thL = zip [1..] $ M.toList thetas :: [(Int, Double)]
z i j = ((h i) - (y i))*(M.getElem i j $ mxs)
sumSquares j = sum [z i j | i <- [1..m]]
thetaJ t j = t - ((alpha * (1/ (fromIntegral m))) * (sumSquares j))
result = map snd $ foldl (\ts _ -> [(j,thetaJ t j) | (j,t) <- ts]) thL [1..it] in
result
とデータ...
6.1101,17.592
5.5277,9.1302
8.5186,13.662
7.0032,11.854
5.8598,6.8233
8.3829,11.886
7.4764,4.3483
8.5781,12
6.4862,6.5987
5.0546,3.8166
5.7107,3.2522
14.164,15.505
5.734,3.1551
8.4084,7.2258
5.6407,0.71618
5.3794,3.5129
6.3654,5.3048
5.1301,0.56077
6.4296,3.6518
7.0708,5.3893
6.1891,3.1386
20.27,21.767
5.4901,4.263
6.3261,5.1875
5.5649,3.0825
18.945,22.638
12.828,13.501
10.957,7.0467
13.176,14.692
22.203,24.147
5.2524,-1.22
6.5894,5.9966
9.2482,12.134
5.8918,1.8495
8.2111,6.5426
7.9334,4.5623
8.0959,4.1164
5.6063,3.3928
12.836,10.117
6.3534,5.4974
5.4069,0.55657
6.8825,3.9115
11.708,5.3854
5.7737,2.4406
7.8247,6.7318
7.0931,1.0463
5.0702,5.1337
5.8014,1.844
11.7,8.0043
5.5416,1.0179
7.5402,6.7504
5.3077,1.8396
7.4239,4.2885
7.6031,4.9981
6.3328,1.4233
6.3589,-1.4211
6.2742,2.4756
5.6397,4.6042
9.3102,3.9624
9.4536,5.4141
8.8254,5.1694
5.1793,-0.74279
21.279,17.929
14.908,12.054
18.959,17.054
7.2182,4.8852
8.2951,5.7442
10.236,7.7754
5.4994,1.0173
20.341,20.992
10.136,6.6799
7.3345,4.0259
6.0062,1.2784
7.2259,3.3411
5.0269,-2.6807
6.5479,0.29678
7.5386,3.8845
5.0365,5.7014
10.274,6.7526
5.1077,2.0576
5.7292,0.47953
5.1884,0.20421
6.3557,0.67861
9.7687,7.5435
6.5159,5.3436
8.5172,4.2415
9.1802,6.7981
6.002,0.92695
5.5204,0.152
5.0594,2.8214
5.7077,1.8451
7.6366,4.2959
5.8707,7.2029
5.3054,1.9869
8.2934,0.14454
13.394,9.0551
5.4369,0.61705
alpha
が0.01
あるときは、私のthetasは[58.39135051546406,653.2884974555699]
に評価されます。 alpha
が0.001
の場合、私の値は[5.839135051546473,65.32884974555617]
になります。 iterations
が10,000に変更されると、以前の値に戻ります。
もっと簡単なサンプルデータセットを試してみてはいかがですか? – leftaroundabout
明確な線形近似のセットを使ってショットを与えます@leftaroundabout –