complexity-theory

    -2

    2答えて

    私は漸近分析に関する問題を練習しており、この問題に悩まされています。 はlog(n!) = O((log(n))^2)ですか? 私がさらに進行することはできませんよ log(n!) = O(n*log(n)) (log 1 + log 2 + .. + log n <= log n + log n + ... + log n) と (log(n))^2 = O(n*log(n)) (log

    0

    1答えて

    このコードの時間複雑度はどのくらいですか? for(int i = 1 ; i <= b ; ++i) for(int j = i ; j <= b ; j += i)

    -1

    2答えて

    複雑さはO(n^2)ですか? def f(n): def g(m): m = 0 for i in range(m): print(m) for i in range(n): g(n)

    0

    1答えて

    1)n要素を持つ線形リストに要素を挿入する最悪の場合。 2)n個の要素とb個のスロットを持つハッシュテーブルに要素を挿入する最悪のケース。各スロットはソートチェーン(一部のスロットは空の場合があります)です。 私は(1)はO(n)だと思いますが、何が(2)なのか分かりません。

    0

    2答えて

    これは先週の講義で挑戦された質問で、以来私はそれを検討してきました。 k番目に大きい要素の2つのAVLツリーを検索するアルゴリズムを作成するように求められました。 2つのツリーの各ノードには、その整数値とそれ自身を含むサブツリー内にある子の数の2つの情報が含まれています(リーフには1つの子があります)。アルゴリズムの複雑さはO((logn)^ 2)よりも悪くはありません。 私はあるツリーの各ノード

    0

    1答えて

    私は与えられたコードの複雑さを見つけるために戦っています。私は、正確な複雑さを特定し、複雑さを実際にどのように分析するのか苦労していると思います。 public void doThings(int[] arr, int start){ boolean found = false; int i = start; while ((found != true) && (i<

    0

    2答えて

    こんにちは、関数が大きなシータの要素であることを証明するという問題に直面しています。問題は次のようになります:4n^3 + 23n^2 + 1(The element of)Theta(n^3)であり、あなたの答えを証明します。私の答えは次の通りです: 基本的に私は大きなオメガと大きなオメガの両方であることを証明しています。これは正しいです?また、与えられた関数が限界を使って大きなシータにあること

    2

    2答えて

    私はデータ構造クラスの学生です。私の現在の割り当ては、私が行ってテストした最小の優先度キューを作ることでした。私の問題は、クラスの時間を計り、Big-Oの複雑さを分析する必要があることです。私は、タイミングクラス(これまでの割り当てに関して行ったこと)を設計し、データを収集し、それをプロットしました。私のdeleteMinとaddメソッドは複雑でO(logn)で、findMinにはO(c)が必要で

    4

    1答えて

    私は NXN行列の行列の実験的コンピューティングの複雑さを決定する助けが必要 マイコード: import numpy as np import timeit t0 = time.time() for n in range(1, 10): A = np.random.rand(n, n) det = np.linalg.slogdet(A)

    0

    1答えて

    C++で比較アルゴリズムを効果的に実装していただきありがとうございます。 私のプログラムは整数列の行からなる入力を受け取り、どのシーケンスが重複しているかを調べる必要があります。しかし、いくつかのシーケンスは横にシフトするかもしれません、そして、それはまだ等しい必要があります。 これは、例えばシーケンス{0,1,2、5,9}と{22,5,9,0,1}が等しいことを意味します。これらの配列または重複