私の理解で一日を進めるためには、あなたがこのような何かを行うことですオプション:Quantlib
import QuantLib as ql
# option data
maturity_date = ql.Date(15, 1, 2016)
spot_price = 127.62
strike_price = 130
volatility = 0.20 # the historical vols for a year
dividend_rate = 0.0163
option_type = ql.Option.Call
risk_free_rate = 0.001
day_count = ql.Actual365Fixed()
#calendar = ql.UnitedStates()
calendar = ql.TARGET()
calculation_date = ql.Date(8, 5, 2015)
ql.Settings.instance().evaluationDate = calculation_date
# construct the European Option
payoff = ql.PlainVanillaPayoff(option_type, strike_price)
exercise = ql.EuropeanExercise(maturity_date)
european_option = ql.VanillaOption(payoff, exercise)
spot_handle = ql.QuoteHandle(
ql.SimpleQuote(spot_price)
)
flat_ts = ql.YieldTermStructureHandle(
ql.FlatForward(calculation_date, risk_free_rate, day_count)
)
dividend_yield = ql.YieldTermStructureHandle(
ql.FlatForward(calculation_date, dividend_rate, day_count)
)
flat_vol_ts = ql.BlackVolTermStructureHandle(
ql.BlackConstantVol(calculation_date, calendar, volatility, day_count)
)
bsm_process = ql.BlackScholesMertonProcess(spot_handle,
dividend_yield,
flat_ts,
flat_vol_ts)
european_option.setPricingEngine(ql.AnalyticEuropeanEngine(bsm_process))
bs_price = european_option.NPV()
print "The theoretical European price is ", bs_price
payoff = ql.PlainVanillaPayoff(option_type, strike_price)
settlement = calculation_date
am_exercise = ql.AmericanExercise(settlement, maturity_date)
american_option = ql.VanillaOption(payoff, am_exercise)
#Once you have the american option object you can value them using the binomial tree method:
binomial_engine = ql.BinomialVanillaEngine(bsm_process, "crr", 100)
american_option.setPricingEngine(binomial_engine)
print "The theoretical American price is ", american_option.NPV()
ql.Settings.instance().evaluation_date = calculation_date + 1
print "The theoretical European price is ", european_option.NPV()
print "The theoretical American price is ", american_option.NPV()
[[email protected] python]$ python european_option.py
The theoretical European price is 6.74927181246
The theoretical American price is 6.85858045945
The theoretical European price is 6.74927181246
The theoretical American price is 6.85858045945
[[email protected] python]$
EDITは
は、以下の提案どおりにコードを変更しましたが、一日の変更はcomputatで違いはありませんイオン。
[[email protected] python]$ python advance_day.py
The theoretical European price is 6.74927181246
The theoretical American price is 6.85858045945
The theoretical European price is 6.74927181246
The theoretical American price is 6.85858045945
[[email protected] python]$
ここでは、提案ごとにコードが変更されています。
import QuantLib as ql
# option data
maturity_date = ql.Date(15, 1, 2016)
spot_price = 127.62
strike_price = 130
volatility = 0.20 # the historical vols for a year
dividend_rate = 0.0163
option_type = ql.Option.Call
risk_free_rate = 0.001
day_count = ql.Actual365Fixed()
#calendar = ql.UnitedStates()
calendar = ql.TARGET()
calculation_date = ql.Date(8, 5, 2015)
ql.Settings.instance().evaluationDate = calculation_date
# construct the European Option
payoff = ql.PlainVanillaPayoff(option_type, strike_price)
exercise = ql.EuropeanExercise(maturity_date)
european_option = ql.VanillaOption(payoff, exercise)
spot_handle = ql.QuoteHandle(
ql.SimpleQuote(spot_price)
)
flat_ts = ql.YieldTermStructureHandle(
ql.FlatForward(0, calendar, risk_free_rate, day_count)
)
dividend_yield = ql.YieldTermStructureHandle(
ql.FlatForward(0, calendar, dividend_rate, day_count)
)
flat_vol_ts = ql.BlackVolTermStructureHandle(
ql.BlackConstantVol(0, calendar, volatility, day_count)
)
bsm_process = ql.BlackScholesMertonProcess(spot_handle,
dividend_yield,
flat_ts,
flat_vol_ts)
european_option.setPricingEngine(ql.AnalyticEuropeanEngine(bsm_process))
bs_price = european_option.NPV()
print "The theoretical European price is ", bs_price
payoff = ql.PlainVanillaPayoff(option_type, strike_price)
settlement = calculation_date
am_exercise = ql.AmericanExercise(settlement, maturity_date)
american_option = ql.VanillaOption(payoff, am_exercise)
#Once you have the american option object you can value them using the binomial tree method:
binomial_engine = ql.BinomialVanillaEngine(bsm_process, "crr", 100)
american_option.setPricingEngine(binomial_engine)
print "The theoretical American price is ", american_option.NPV()
ql.Settings.instance().evaluation_date = calculation_date + 1
# Also tried calendar.advance(calculation_date,1,ql.Days)
print "The theoretical European price is ", european_option.NPV()
print "The theoretical American price is ", american_option.NPV()
私はフォローしていません。元の投稿のEDITセクションを参照してください。 1日の前進と後の出力は同じです。 – Ivan
新しい日付を設定するときは、 'evaluation_date'ではなく' evaluationDate'でなければなりません。私はあまりにも初めてそれを逃した。残念ながら、Pythonはあなたに新しい属性を追加しているだけであることを警告していません...ただし、オリジナルのスクリプトではオプション値は変更されません。 –
私はそれを働かせました。ありがとう! – Ivan