TensorFlowを初めて使用しており、CIFAR-10データセットの画像を分類するアルゴリズムを作成しようとしています。私はこのエラーを取得しています:ここでTensorflow InvalidArgumentError(上記のトレースバック参照):最小テンソルランク:2しかし、得られた:1
InvalidArgumentError (see above for traceback): Minimum tensor rank: 2 but got: 1
は私のコードです:
Traceback (most recent call last):
File "cifar_10.py", line 72, in <module>
train_neural_network(x)
File "cifar_10.py", line 69, in train_neural_network
accuracy = accuracy.eval({x:test_data['data'],y:test_data['labels']})
File "/home/mddrill/anaconda2/envs/python27/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 559, in eval
return _eval_using_default_session(self, feed_dict, self.graph, session)
File "/home/mddrill/anaconda2/envs/python27/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 3761, in _eval_using_default_session
return session.run(tensors, feed_dict)
File "/home/mddrill/anaconda2/envs/python27/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 717, in run
run_metadata_ptr)
File "/home/mddrill/anaconda2/envs/python27/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 915, in _run
feed_dict_string, options, run_metadata)
File "/home/mddrill/anaconda2/envs/python27/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 965, in _do_run
target_list, options, run_metadata)
File "/home/mddrill/anaconda2/envs/python27/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 985, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors.InvalidArgumentError: Minimum tensor rank: 2 but got: 1
[[Node: ArgMax_1 = ArgMax[T=DT_INT64, Tidx=DT_INT32, _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_Placeholder_1_0, ArgMax_1/dimension)]]
Caused by op u'ArgMax_1', defined at:
File "cifar_10.py", line 72, in <module>
train_neural_network(x)
File "cifar_10.py", line 65, in train_neural_network
correct = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1))
File "/home/mddrill/anaconda2/envs/python27/lib/python2.7/site-packages/tensorflow/python/ops/gen_math_ops.py", line 166, in arg_max
name=name)
File "/home/mddrill/anaconda2/envs/python27/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 749, in apply_op
op_def=op_def)
File "/home/mddrill/anaconda2/envs/python27/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2380, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/home/mddrill/anaconda2/envs/python27/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1298, in __init__
self._traceback = _extract_stack()
InvalidArgumentError (see above for traceback): Minimum tensor rank: 2 but got: 1
[[Node: ArgMax_1 = ArgMax[T=DT_INT64, Tidx=DT_INT32, _device="/job:localhost/replica:0/task:0/cpu:0"](_recv_Placeholder_1_0, ArgMax_1/dimension)]]
私はエラーが発生している場所の上にマークされました:ここ
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import cPickle
n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500
n_classes = 10
batch_size = 100
image_size = 32*32*3 # because 3 channels
x = tf.placeholder('float', shape=(None, image_size))
y = tf.placeholder(tf.int64)
with open('test_batch','rb') as f:
test_data = cPickle.load(f)
print test_data
def neural_network_model(data):
hidden_1_layer = {'weights':tf.Variable(tf.random_normal([image_size, n_nodes_hl1])), 'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])), 'biases':tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])), 'biases':tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])), 'biases':tf.Variable(tf.random_normal([n_classes]))}
# input_data * weights + biases
l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']), hidden_1_layer['biases'])
# activation function
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']), hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']), hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3, output_layer['weights']) + output_layer['biases']
return output
def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(prediction, tf.squeeze(y)))
#learning rate = 0.001
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 10
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for epoch in range(hm_epochs):
epoch_loss = 0
for i in range(5):
with open('data_batch_'+str(i+1),'rb') as f:
train_data = cPickle.load(f)
_, c = sess.run([optimizer, cost], feed_dict={x:train_data['data'],y:train_data['labels']})
epoch_loss += c
print 'Epoch ' + str(epoch) + ' completed out of ' + str(hm_epochs) + ' loss: ' + str(epoch_loss)
correct = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1))//THIS IS THE LINE WHERE THE ERROR OCCURS
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
with open('test_batch','rb') as f:
test_data = cPickle.load(f)
accuracy = accuracy.eval({x:test_data['data'],y:test_data['labels']})
print 'Accuracy: ' + str(accuracy)
train_neural_network(x)
はトレースバックです。 correct = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1))
という行にあります。なぜ私はこれを手に入れているのですか?どうすれば修正できますか? tf.argmax
の公式TensorFlowのドキュメントからの引用
完全なトレースバックはこのような場合に便利です –
@YaroslavBulatovトレースバックを追加しました –