2017-08-18 36 views
0

fで定義された関数を学習する2つの隠れ層を持つ非常に単純なパーセプトロンを作成しようとしています。私が抱えている問題は、(私がやっていることを実際に手がかりにしているのではなく)長いスタックトレースを得ていることです。(底に) 私はy_が定義されている行から発生していると思います。このエラーの最後の部分は次のとおりです。TensorflowプレースホルダーのInvalidArgumentError

InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder_1' with dtype float 

コード:

import tensorflow as tf 
import numpy as np 

def f(X): 
    y1 = 2.41*X[0] + 0.09 + np.random.normal() 
    y2 = 3.84*X[1] + 5.3 + np.random.normal() 
    y3 = 0.79*X[2] + 13.0 + np.random.normal() 

    return [y1, y2, y3] 

x = tf.placeholder(tf.float32, shape = ([None, 3])) 
y_ = tf.placeholder(tf.float32, shape = ([None, 3])) 

W1 = tf.Variable(tf.zeros([3, 10])) 
b = tf.Variable(tf.zeros([10])) 

x_med = tf.matmul(x, W1) + b 

W2 = tf.Variable(tf.zeros([10, 3])) 

y = tf.matmul(x_med, W2) 

dif = tf.subtract(y_, y) 
sqrd = tf.reduce_mean(tf.multiply(dif, dif))/3 

#loss = tf.reduce_sum(tf.matmul(np.array(y_ - y), np.array(y_ - y))) 
loss = tf.reduce_sum(sqrd) 

optimizer = tf.train.GradientDescentOptimizer(learning_rate = 0.03).minimize(loss) 

correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) 

X_train = [] 
y_train = [] 
i = 0 
while i < 100000: 
    x1 = np.random.uniform(0, 100) 
    x2 = np.random.uniform(0, 100) 
    x3 = np.random.uniform(0, 100) 

    X_train.append([x1, x2, x3]) 
    y_train.append(f([x1, x2, x3])) 

    i += 1 

X_test = [] 
y_test = [] 
i = 0 
while i < 250: 
    x1 = np.random.uniform(0, 100) 
    x2 = np.random.uniform(0, 100) 
    x3 = np.random.uniform(0, 100) 

    X_test.append([x1, x2, x3]) 
    y_test.append(f([x1, x2, x3])) 

    i += 1 

epochs = 1 
init_op = tf.global_variables_initializer() 
with tf.Session() as sess: 
    # initialise the variables 
    sess.run(init_op) 
    for epoch in range(epochs): 
     avg_cost = 0 
     batchNum = 0 
     batch_size = 10 
     total_batch = int(len(X_train)/batch_size) 
     for i in range(total_batch): 
      batch_x = X_train[batchNum: batchNum + batch_size] 
      batch_y = y_train[batchNum: batchNum + batch_size] 
      batchNum += batch_size 
      _, c = sess.run([optimizer, loss], 
          feed_dict={x:batch_x, y: batch_y}) 
      print(c) 
      avg_cost += c/total_batch 

     print("epoch: " + str(epoch) + " avg cost: " + str(avg_cost)) 

スタックトレース:

Traceback (most recent call last): 
    File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1039, in _do_call 
    return fn(*args) 
    File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1021, in _run_fn 
    status, run_metadata) 
    File "C:\Users\allbee\Anaconda3\lib\contextlib.py", line 89, in __exit__ 
    next(self.gen) 
    File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 466, in raise_exception_on_not_ok_status 
    pywrap_tensorflow.TF_GetCode(status)) 
tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float 
     [[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]] 

During handling of the above exception, another exception occurred: 

Traceback (most recent call last): 
    File "ANNTest.py", line 74, in <module> 
    feed_dict={x:batch_x, y: batch_y}) 
    File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 778, in run 
    run_metadata_ptr) 
    File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 982, in _run 
    feed_dict_string, options, run_metadata) 
    File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1032, in _do_run 
    target_list, options, run_metadata) 
    File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\client\session.py", line 1052, in _do_call 
    raise type(e)(node_def, op, message) 
tensorflow.python.framework.errors_impl.InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder_1' with dtype float 
     [[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]] 

Caused by op 'Placeholder_1', defined at: 
    File "ANNTest.py", line 12, in <module> 
    y_ = tf.placeholder(tf.float32, shape = ([None, 3])) 
    File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\ops\array_ops.py", line 1507, in placeholder 
    name=name) 
    File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\ops\gen_array_ops.py", line 1997, in _placeholder 
    name=name) 
    File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 768, in apply_op 
    op_def=op_def) 
    File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 2336, in create_op 
    original_op=self._default_original_op, op_def=op_def) 
    File "C:\Users\allbee\Anaconda3\lib\site-packages\tensorflow\python\framework\ops.py", line 1228, in __init__ 
    self._traceback = _extract_stack() 

InvalidArgumentError (see above for traceback): You must feed a value for placeholder tensor 'Placeholder_1' with dtype float 
     [[Node: Placeholder_1 = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]] 

答えて

1

私は問題はあなたがy代わりのy_を送り、このラインから茎疑い:

  _, c = sess.run([optimizer, loss], 
         feed_dict={x:batch_x, y: batch_y}) 

次のように書き換えてください:

  _, c = sess.run([optimizer, loss], 
         feed_dict={x:batch_x, y_: batch_y})