0
私はPCAを使用して次元削減を行っています。私のトレーニングデータは3300次元の1200000レコードです。ここではモデルPCAを新しいデータに適用するとパフォーマンスが低下しました
X, y = load_data(f_file1)
valid_X, valid_y = load_data(f_file2)
pca = PCA(n_components=n_compo, whiten=True)
X = pca.fit_transform(X)
valid_input = pca.transform(valid_X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42)
clf = DecisionTreeClassifier(criterion='entropy', max_depth=30,
min_samples_leaf=2, class_weight={0: 10, 1: 1}) # imbalanced class
clf.fit(X_train, y_train)
print(clf.score(X_train, y_train)*100,
clf.score(X_test, y_test)*100,
recall_score(y_train, clf.predict(X_train))*100,
recall_score(y_test, clf.predict(X_test))*100,
precision_score(y_train, clf.predict(X_train))*100,
precision_score(y_test, clf.predict(X_test))*100,
auc(*roc_curve(y_train, clf.predict_proba(X_train)[:, 1], pos_label=1)[:-1])*100,
auc(*roc_curve(y_test, clf.predict_proba(X_test)[:, 1], pos_label=1)[:-1])*100)
print(precision_score(valid_y, clf.predict(valid_input))*100,
recall_score(valid_y, clf.predict(valid_input))*100,
accuracy_score(valid_y, clf.predict(valid_input))*100,
auc(*roc_curve(valid_y, clf.predict_proba(valid_input)[:, 1], pos_label=1)[:-1])*100)
を訓練するために私のコードは出力だからリコールと精度は0です
99.80, 99.32, 99.87, 99.88, 99.74, 98.78, 99.99, 99.46
0.00, 0.00, 97.13, 49.98, 700.69
です。なぜPCAがデータを検証する上でうまくいかないと思われるのか、過大なモデルになったのでしょうか?
X_trainにのみpcaをフィットさせ、X_testでtransform()を実行する必要があります。現在、あなたはX全体でPCAをやっていて、それを列車とテストに分割します。これは過当になります。 –