でなければなりませんが、ここで私はこれは問題がでエンコードされたダミー変数パンダ:例外:データは1次元
1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 4.400000000000000000e+01 7.200000000000000000e+04
0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 2.700000000000000000e+01 4.800000000000000000e+04
0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 3.000000000000000000e+01 5.400000000000000000e+04
0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 3.800000000000000000e+01 6.100000000000000000e+04
0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 4.000000000000000000e+01 6.377777777777778101e+04
1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 3.500000000000000000e+01 5.800000000000000000e+04
0.000000000000000000e+00 0.000000000000000000e+00 1.000000000000000000e+00 3.877777777777777857e+01 5.200000000000000000e+04
1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 4.800000000000000000e+01 7.900000000000000000e+04
0.000000000000000000e+00 1.000000000000000000e+00 0.000000000000000000e+00 5.000000000000000000e+01 8.300000000000000000e+04
1.000000000000000000e+00 0.000000000000000000e+00 0.000000000000000000e+00 3.700000000000000000e+01 6.700000000000000000e+04
とXの行列であるチュートリアル
# Data Preprocessing
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('Data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 3].values
# Taking care of missing data
from sklearn.preprocessing import Imputer
imputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0)
imputer = imputer.fit(X[:, 1:3])
X[:, 1:3] = imputer.transform(X[:, 1:3])
# Encoding categorical data
# Encoding the Independent Variable
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[:, 0] = labelencoder_X.fit_transform(X[:, 0])
onehotencoder = OneHotEncoder(categorical_features = [0])
X = onehotencoder.fit_transform(X).toarray()
# Encoding the Dependent Variable
labelencoder_y = LabelEncoder()
y = labelencoder_y.fit_transform(y)
から得たものです列ラベルはありません。私は
something = pd.get_dummies(X)
を試してみました。しかし、私は、彼らが実装MLアルゴリズムの背後にある数学を主としているよう
Exception: Data must be 1-dimensional