cost_matrix:
[[0,1,100],
[1,0,1],
[1,20,0]]
ラベル:
[1,2]
Y *:
[[0,1,0],
[0,0,1]]
Y(予測):
[[0.2,0.3,0.5],
[0.1,0.2,0.7]]
ラベル、cost_matrix - > cost_embedding:
[[1,0,1],
[1,20,0]]
それは明らかに0.3 [0.2,0.3,0.5]では、[0,1,0]の右lable probilityを指し、それは損失にcontibuteべきではありません。
[0.1,0.2,0.7]の0.7は同じです。言い換えれば、y *の値が1のposは損失に繋がりません。
だから(1-Y *)を有する:
[[1,0,1],
[1,1,0]]
そしてエントロピーYに目標*ログ(予測)+(1-ターゲット)*ログ(1-予測)、および値0であります*(1-Y)前記(1-予測)
1-yは(1-ターゲット)*ログ(1-予測)を使用し、私は使用する必要があります
[[0.8,*0.7*,0.5],
[0.9,0.8,*0.3*]]
(イタリックNUMであります役に立たない)
その損失は-tfあるカスタム損失が
[[1,0,1], [1,20,0]] * log([[0.8,0.7,0.5],[0.9,0.8,0.3]]) *
[[1,0,1],[1,1,0]]
であり、あなたは(1-Y *)を見ることができ、ここで
をドロップすることができます。reduce_meanそれを適用するために、 (*ログ(1-y)をcost_embedding)、次のようになります。
-tf.reduce_mean(cost_embedding*log(tf.clip((1-y),1e-10)))
デモは
import tensorflow as tf
import numpy as np
hidden_units = 50
num_class = 3
class Model():
def __init__(self,name_scope,is_custom):
self.name_scope = name_scope
self.is_custom = is_custom
self.input_x = tf.placeholder(tf.float32,[None,hidden_units])
self.input_y = tf.placeholder(tf.int32,[None])
self.instantiate_weights()
self.logits = self.inference()
self.predictions = tf.argmax(self.logits,axis=1)
self.losses,self.train_op = self.opitmizer()
def instantiate_weights(self):
with tf.variable_scope(self.name_scope + 'FC'):
self.W = tf.get_variable('W',[hidden_units,num_class])
self.b = tf.get_variable('b',[num_class])
self.cost_matrix = tf.constant(
np.array([[0,1,100],[1,0,100],[20,5,0]]),
dtype = tf.float32
)
def inference(self):
return tf.matmul(self.input_x,self.W) + self.b
def opitmizer(self):
if not self.is_custom:
loss = tf.nn.sparse_softmax_cross_entropy_with_logits\
(labels=self.input_y,logits=self.logits)
else:
batch_cost_matrix = tf.nn.embedding_lookup(
self.cost_matrix,self.input_y
)
loss = - tf.log(1 - tf.nn.softmax(self.logits))\
* batch_cost_matrix
train_op = tf.train.AdamOptimizer().minimize(loss)
return loss,train_op
import random
batch_size = 128
norm_model = Model('norm',False)
custom_model = Model('cost',True)
split_point = int(0.9 * dataset_size)
train_set = datasets[:split_point]
test_set = datasets[split_point:]
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(100):
batch_index = random.sample(range(split_point),batch_size)
train_batch = train_set[batch_index]
train_labels = lables[batch_index]
_,eval_predict,eval_loss = sess.run([norm_model.train_op,
norm_model.predictions,norm_model.losses],
feed_dict={
norm_model.input_x:train_batch,
norm_model.input_y:train_labels
})
_,eval_predict1,eval_loss1 = sess.run([custom_model.train_op,
custom_model.predictions,custom_model.losses],
feed_dict={
custom_model.input_x:train_batch,
custom_model.input_y:train_labels
})
# print 'norm',eval_predict,'\ncustom',eval_predict1
print np.sum(((eval_predict == train_labels)==True).astype(np.int)),\
np.sum(((eval_predict1 == train_labels)==True).astype(np.int))
if i%10 == 0:
print 'norm_test',sess.run(norm_model.predictions,
feed_dict={
norm_model.input_x:test_set,
norm_model.input_y:lables[split_point:]
})
print 'custom_test',sess.run(custom_model.predictions,
feed_dict={
custom_model.input_x:test_set,
custom_model.input_y:lables[split_point:]
})
を下回っています