私は、例のようにPyOpenCLを使って還元合計を作成しようとしていました:https://dournac.org/info/gpu_sum_reduction。私はすべての値1でベクトルを合計しようとしています。結果は最初の要素で16384になるはずです。 しかし、ちょうどいくつかの点が集まっているようです。ローカルインデックスが必要ですか?競合状態はありますか(結果を同じにしないで2回実行すると)?次のコードで何が間違っていますか?OpenCLのローカルメモリフェンスとグローバルメモリフェンスの違いは何ですか?
import numpy as np
import pyopencl as cl
def readKernel(kernelFile):
with open(kernelFile, 'r') as f:
data=f.read()
return data
a_np = np.random.rand(128*128).astype(np.float32)
a_np=a_np.reshape((128,128))
print(a_np.shape)
device = cl.get_platforms()[0].get_devices(cl.device_type.GPU)[0]
print(device)
ctx=cl.Context(devices=[device])
#ctx = cl.create_some_context() #ask which context to use
queue = cl.CommandQueue(ctx)
mf = cl.mem_flags
a_g = cl.Buffer(ctx, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=a_np)
prg = cl.Program(ctx,readKernel("kernel2.cl")).build()
prg.test(queue, a_np.shape, None, a_g)
cl.enqueue_copy(queue, a_np, a_g).wait()
np.savetxt("teste2.txt",a_np,fmt="%i")
カーネルは次のとおりです。
__kernel void test(__global float *count){
int id = get_global_id(0)+get_global_id(1)*get_global_size(0);
int nelements = get_global_size(0)*get_global_size(1);
count[id] = 1;
barrier(CLK_GLOBAL_MEM_FENCE);
for (int stride = nelements/2; stride>0; stride = stride/2){
barrier(CLK_GLOBAL_MEM_FENCE); //wait everyone update
if (id < stride){
int s1 = count[id];
int s2 = count[id+stride];
count[id] = s1+s2;
}
}
barrier(CLK_GLOBAL_MEM_FENCE); //wait everyone update
}