2
カテゴリ変数をプロットする最も良い方法は、Pythonの別のカテゴリ変数です。 「男性」と「女性」があり、反対側に「支払った」と「未払い」があるとします。意味のある、理解しやすいフィギュアを、Pythonでプロットして、男性と女性についての情報と、彼らがローンを支払ったかどうかを記述することができます。Pythonの別のカテゴリ変数と比較してカテゴリ変数をプロット
カテゴリ変数をプロットする最も良い方法は、Pythonの別のカテゴリ変数です。 「男性」と「女性」があり、反対側に「支払った」と「未払い」があるとします。意味のある、理解しやすいフィギュアを、Pythonでプロットして、男性と女性についての情報と、彼らがローンを支払ったかどうかを記述することができます。Pythonの別のカテゴリ変数と比較してカテゴリ変数をプロット
上記積み重ね棒グラフのコード:
import pandas as pd
import matplotlib.pyplot as plt
raw_data = {'genders': ['Male', 'Female'],
'Paid': [40, 60],
'Unpaid': [60, 40]}
df = pd.DataFrame(raw_data, columns = ['genders', 'Paid', 'Unpaid'])
# Create the general blog and the "subplots" i.e. the bars
f, ax1 = plt.subplots(1, figsize=(12,8))
# Set the bar width
bar_width = 0.75
# positions of the left bar-boundaries
bar_l = [i+1 for i in range(len(df['Paid']))]
# positions of the x-axis ticks (center of the bars as bar labels)
tick_pos = [i+(bar_width/2) for i in bar_l]
# Create a bar plot, in position bar_1
ax1.bar(bar_l,
# using the pre_score data
df['Paid'],
# set the width
width=bar_width,
# with the label pre score
label='Paid',
# with alpha 0.5
alpha=0.5,
# with color
color='#F4561D')
# Create a bar plot, in position bar_1
ax1.bar(bar_l,
# using the mid_score data
df['Unpaid'],
# set the width
width=bar_width,
# with pre_score on the bottom
bottom=df['Paid'],
# with the label mid score
label='Unpaid',
# with alpha 0.5
alpha=0.5,
# with color
color='#F1911E')
# set the x ticks with names
plt.xticks(tick_pos, df['genders'])
# Set the label and legends
ax1.set_ylabel("Proportion")
ax1.set_xlabel("Genders")
plt.legend(loc='upper left')
# Set a buffer around the edge
plt.xlim([min(tick_pos)-bar_width, max(tick_pos)+bar_width])