2016-04-06 18 views
1

ここではチュートリアルhttp://deeplearning.net/tutorial/lenet.htmlを3D畳み込みニューラルネットワークに変更しています。私が実行したときに3D実行時の奇妙なエラーCNN

はしかし、私はここで

Traceback (most recent call last): 
    File "cnnProgram.py", line 191, in <module> 
    minibatch_avg_cost = train_model(minibatch_index) 
    File "/Volumes/TONY/anaconda/lib/python2.7/site-packages/theano/compile/function_module.py", line 871, in __call__ 
    storage_map=getattr(self.fn, 'storage_map', None)) 
    File "/Volumes/TONY/anaconda/lib/python2.7/site-packages/theano/gof/link.py", line 314, in raise_with_op 
    reraise(exc_type, exc_value, exc_trace) 
    File "/Volumes/TONY/anaconda/lib/python2.7/site-packages/theano/compile/function_module.py", line 859, in __call__ 
    outputs = self.fn() 
ValueError: total size of new array must be unchanged 
Apply node that caused the error: Reshape{4}(InplaceDimShuffle{0,4,1,2,3}.0, TensorConstant{[5000 5.. 12 5]}) 
Toposort index: 102 
Inputs types: [TensorType(float64, 5D), TensorType(int64, vector)] 
Inputs shapes: [(200, 10, 5, 12, 5), (4,)] 
Inputs strides: [(24000, 8, 4800, 400, 80), (8,)] 
Inputs values: ['not shown', array([5000, 5, 12, 5])] 
Outputs clients: [[CorrMM_gradWeights{valid, (1, 1)}(Reshape{4}.0, Reshape{4}.0), CorrMM{valid, (1, 1)}(Reshape{4}.0, Subtensor{::, ::, ::int64, ::int64}.0)]] 

私のコードがある、私が.dimshuffleを持つディメンションの順序を変更するときに問題が発生したようだ、として、問題に会いましたか?これはあまりにも奇妙で、私は完全に理由を理解することはできません。

ここに私のコードです。

from __future__ import print_function 

import scipy.io as sio 
import numpy as np 
import theano.tensor as T 
import theano 
from theano import shared 
from lasagne.layers import InputLayer, DenseLayer 

import os 
import sys 
import timeit 

from mlp import LogRegr, HiddenLayer, DropoutLayer 
from convnet3d import ConvLayer, NormLayer, PoolLayer, RectLayer 
from activations import relu, tanh, sigmoid, softplus 

# Get data 

dataReadyForCNN_withValid = sio.loadmat("DataReadyForCNN_withValid.mat") 

xTrain = dataReadyForCNN_withValid["xTrain"] 
xTrain = xTrain.astype("float64") 

yTrainCond = dataReadyForCNN_withValid["yTrainCond"] 
yTrainCond = yTrainCond.astype("int32") 
yTrainWord = dataReadyForCNN_withValid["yTrainWord"] 
yTrainWord = yTrainWord.astype("int32") 

xValidate = dataReadyForCNN_withValid["xTrain"] 
xValidate = xValidate.astype("float64") 

yValidateCond = dataReadyForCNN_withValid["yValidateCond"] 
yValidateCond = yValidateCond.astype("int32") 
yValidateWord = dataReadyForCNN_withValid["yValidateWord"] 
yValidateWord = yValidateWord.astype("int32") 

xTest = dataReadyForCNN_withValid["xTest"] 
xTest = xTest.astype("float64") 

yTestCond = dataReadyForCNN_withValid["yTestCond"] 
yTestCond = yTestCond.astype("int32") 
yTestWord = dataReadyForCNN_withValid["yTestWord"] 
yTestWord = yTestWord.astype("int32") 


################################## 
# Build Model 
################################# 
# xTrain = np.random.rand(500, 1, 51, 61, 23).astype('float64') 

dtensor5 = T.TensorType('float64', (False,)*5) 
x = dtensor5('x') # the input data 
y = T.ivector() 

# allocate symbolic variables for the data 
index = T.lscalar() # index to a [mini]batch 

# input = (nImages, nChannel(nFeatureMaps), nDim1, nDim2, nDim3) 

# layer1 (500, 5, 47, 56, 22) 
# layer2 (500, 5, 10, 12, 5) 
# layer3 (500, 3, 9, 11, 4) 
# layer4 (500, 3, 5, 6, 2) 

kernel_shape = (5,6,2) 
fMRI_shape = (51, 61, 23) 
n_in_maps = 1 # channel 
n_out_maps = 5 # num of feature maps, aka the depth of the neurons 
batch_size = 200 

# 1st: Convolution Layer 
layer1_input = x 
layer1 = ConvLayer(layer1_input, 1, 5, (5, 6, 2), fMRI_shape, 
         batch_size, tanh) 

# print layer1.output.eval({x:xTrain[:500]}).shape 

# 2nd: Pool layer 
poolShape = (5, 5, 5) 
layer2 = PoolLayer(layer1.output, poolShape) 

# print layer2.output.eval({x:xTrain}).shape 

# 3rd: Convolution Layer 
layer3 = ConvLayer(layer2.output, 5, 3, (2, 2, 2), (10, 12, 5), 
         500, tanh) 

# print layer3.output.eval({x:xTrain[:500]}).shape 

# 4th: Pool layer 
layer4 = PoolLayer(layer3.output, (2, 2, 2)) 

# print layer4.output.eval({x:xTrain[:500]}).shape 

# 5th: Dense layer 
layer5_input = T.flatten(layer4.output, outdim=2) 
layer5 = HiddenLayer(layer5_input, n_in=180, n_out=500, activation=tanh) 

# layer5.output.eval({x:xTrain[:500]}).shape 

# 6th: Logistic layer 
layer6 = LogRegr(layer5.output, 500, 12, tanh) 

cost = layer6.negative_log_likelihood(y) 

# create a function to compute the mistakes that are made by the model 
test_model = theano.function(
    [index], 
    layer6.errors(y), 
    givens={ 
     x: shared(xTest)[index * batch_size: (index + 1) * batch_size], 
     y: shared(yTestCond[0])[index * batch_size: (index + 1) * batch_size] 
    } 
) 

validate_model = theano.function(
    [index], 
    layer6.errors(y), 
    givens={ 
     x: shared(xValidate)[index * batch_size: (index + 1) * batch_size], 
     y: shared(yValidateCond[0])[index * batch_size: (index + 1) * batch_size] 
    } 
) 

# create a list of all model parameters to be fit by gradient descent 
params = layer5.params + layer3.params + layer1.params + layer6.params 

# create a list of gradients for all model parameters 
grads = T.grad(cost, params) 

# train_model is a function that updates the model parameters by 
# SGD Since this model has many parameters, it would be tedious to 
# manually create an update rule for each model parameter. We thus 
# create the updates list by automatically looping over all 
# (params[i], grads[i]) pairs. 
learning_rate=0.1 

updates = [ 
    (param_i, param_i - learning_rate * grad_i) 
    for param_i, grad_i in zip(params, grads) 
] 

train_model = theano.function(
    [index], 
    cost, 
    updates=updates, 
    givens={ 
     x: shared(xTrain)[index * batch_size: (index + 1) * batch_size], 
     y: shared(yTrainCond[0])[index * batch_size: (index + 1) * batch_size] 
    } 
) 

############### 
# TRAIN MODEL # 
############### 
import timeit 

print('... training') 

n_train_batches = 10 
n_test_batches = 10 
n_validate_batches = 10 

n_epochs=200 

# early-stopping parameters 
patience = 10000 # look as this many examples regardless 
patience_increase = 2 # wait this much longer when a new best is 
         # found 
improvement_threshold = 0.995 # a relative improvement of this much is 
           # considered significant 
validation_frequency = min(n_train_batches, patience // 2) 
           # go through this many 
           # minibatche before checking the network 
           # on the validation set; in this case we 
           # check every epoch 

best_validation_loss = np.inf 
best_iter = 0 
test_score = 0. 
start_time = timeit.default_timer() 

epoch = 0 
done_looping = False 

while (epoch < n_epochs) and (not done_looping): 
    epoch = epoch + 1 
    for minibatch_index in range(n_train_batches): 

     minibatch_avg_cost = train_model(minibatch_index) 
     # iteration number 
     iter = (epoch - 1) * n_train_batches + minibatch_index 

     if (iter + 1) % validation_frequency == 0: 
      # compute zero-one loss on validation set 
      validation_losses = [validate_model(i) for i 
           in range(n_valid_batches)] 
      this_validation_loss = numpy.mean(validation_losses) 

      print(
       'epoch %i, minibatch %i/%i, validation error %f %%' % 
       (
        epoch, 
        minibatch_index + 1, 
        n_train_batches, 
        this_validation_loss * 100. 
       ) 
      ) 

      # if we got the best validation score until now 
      if this_validation_loss < best_validation_loss: 
       #improve patience if loss improvement is good enough 
       if (
        this_validation_loss < best_validation_loss * 
        improvement_threshold 
       ): 
        patience = max(patience, iter * patience_increase) 

       best_validation_loss = this_validation_loss 
       best_iter = iter 

       # test it on the test set 
       test_losses = [test_model(i) for i 
           in range(n_test_batches)] 
       test_score = numpy.mean(test_losses) 

       print(('  epoch %i, minibatch %i/%i, test error of ' 
         'best model %f %%') % 
         (epoch, minibatch_index + 1, n_train_batches, 
         test_score * 100.)) 

     if patience <= iter: 
      done_looping = True 
      break 


end_time = timeit.default_timer() 
print(('Optimization complete. Best validation score of %f %% ' 
     'obtained at iteration %i, with test performance %f %%') % 
     (best_validation_loss * 100., best_iter + 1, test_score * 100.)) 

答えて

1

私はあなたのデータを持っていなかったので、そこで、コードのデータ部分を変更し、それをテストしました。私はバグを起こさなかった。

入力データが適切な形式(ケースに(50,1,51,61,23)の形で表示されていること)を確認してください。