この問題は、私がearlierに質問した質問に関連しています。 私は問題をより明確に伝える方法を考え、言葉の問題について謝罪しました。アドバイスをいただければ幸いです。潤滑油は部分集合に似ていませんか?
以下は、私が作業しているデータセットの大部分がサブセット化された100行のスニペットです。
SPD_2015 <- structure(list(summarized.offense.description = c("ASSAULT",
"THREATS", "CAR PROWL", "SHOPLIFTING", "MAIL THEFT", "THREATS",
"DISTURBANCE", "STOLEN PROPERTY", "TRESPASS", "VEHICLE THEFT",
"CAR PROWL", "THREATS", "STOLEN PROPERTY", "VEHICLE THEFT", "BURGLARY-SECURE PARKING-RES",
"CAR PROWL", "THREATS", "BIKE THEFT", "BURGLARY", "ASSAULT",
"STOLEN PROPERTY", "DISTURBANCE", "VEHICLE THEFT", "CAR PROWL",
"OTHER PROPERTY", "ASSAULT", "PROPERTY DAMAGE", "BURGLARY-SECURE PARKING-RES",
"ANIMAL COMPLAINT", "OTHER PROPERTY", "BURGLARY", "BURGLARY",
"CAR PROWL", "SHOPLIFTING", "BURGLARY", "PROPERTY DAMAGE", "DISTURBANCE",
"PROPERTY DAMAGE", "STOLEN PROPERTY", "OTHER PROPERTY", "MAIL THEFT",
"PROPERTY DAMAGE", "VEHICLE THEFT", "OTHER PROPERTY", "ROBBERY",
"CAR PROWL", "NARCOTICS", "OTHER PROPERTY", "BURGLARY", "DISTURBANCE",
"ASSAULT", "BURGLARY-SECURE PARKING-RES", "OTHER PROPERTY", "FRAUD",
"SHOPLIFTING", "OTHER PROPERTY", "OTHER PROPERTY", "DISTURBANCE",
"CAR PROWL", "STOLEN PROPERTY", "OTHER PROPERTY", "OTHER PROPERTY",
"VIOLATION OF COURT ORDER", "DISTURBANCE", "NARCOTICS", "ASSAULT",
"DISTURBANCE", "TRESPASS", "NARCOTICS", "CAR PROWL", "NARCOTICS",
"OTHER PROPERTY", "CAR PROWL", "CAR PROWL", "ASSAULT", "TRAFFIC",
"OTHER PROPERTY", "CAR PROWL", "PROSTITUTION", "OTHER PROPERTY",
"OTHER PROPERTY", "ASSAULT", "BURGLARY", "DISTURBANCE", "PROPERTY DAMAGE",
"PROPERTY DAMAGE", "BURGLARY", "VEHICLE THEFT", "FRAUD", "VEHICLE THEFT",
"FRAUD", "CAR PROWL", "BIKE THEFT", "CAR PROWL", "WARRANT ARREST",
"STOLEN PROPERTY", "CAR PROWL", "PROPERTY DAMAGE", "VEHICLE THEFT",
"BIKE THEFT"), occurred.date.or.date.range.start = c("04/17/2015 01:10:00 AM",
"11/15/2015 12:04:00 PM", "05/29/2015 08:00:00 PM", "12/15/2015 02:25:00 PM",
"07/28/2015 12:00:00 AM", "02/24/2015 06:01:00 PM", "05/24/2015 04:20:00 PM",
"03/13/2015 02:04:00 PM", "06/14/2015 08:00:00 AM", "05/19/2015 03:18:00 PM",
"07/18/2015 06:00:00 AM", "05/11/2015 05:16:00 PM", "01/08/2015 12:52:00 PM",
"06/17/2015 05:00:00 PM", "07/04/2015 12:00:00 AM", "10/26/2015 12:12:00 AM",
"05/01/2015 12:00:00 PM", "07/02/2015 10:00:00 PM", "01/10/2015 07:30:00 PM",
"02/17/2015 01:29:00 PM", "12/17/2015 02:26:00 AM", "08/04/2015 10:49:00 PM",
"10/27/2015 12:29:00 AM", "07/29/2015 03:00:00 PM", "10/24/2015 06:30:00 PM",
"02/20/2015 03:07:00 AM", "11/11/2015 09:00:00 AM", "03/24/2015 10:00:00 PM",
"11/03/2015 08:47:00 PM", "04/15/2015 02:00:00 PM", "07/15/2015 03:00:00 PM",
"11/17/2015 08:30:00 AM", "09/22/2015 05:00:00 PM", "02/09/2015 09:19:00 AM",
"01/07/2015 08:30:00 AM", "05/01/2015 07:30:00 AM", "04/26/2015 03:30:00 AM",
"04/18/2015 03:00:00 AM", "10/01/2015 08:00:00 PM", "05/07/2015 01:00:00 AM",
"02/05/2015 03:15:00 PM", "01/18/2015 05:00:00 PM", "10/17/2015 11:00:00 PM",
"03/23/2015 05:35:00 PM", "02/16/2015 07:25:00 PM", "07/30/2015 08:00:00 PM",
"11/10/2015 02:28:00 PM", "03/14/2015 10:10:00 AM", "12/10/2015 08:26:00 PM",
"10/05/2015 01:45:00 AM", "02/16/2015 01:56:00 PM", "10/19/2015 06:27:00 PM",
"12/01/2015 07:30:00 AM", "01/28/2015 08:40:00 PM", "05/01/2015 01:40:00 PM",
"10/30/2015 03:15:00 AM", "09/04/2015 03:34:00 PM", "06/06/2015 04:53:00 PM",
"07/22/2015 06:20:00 AM", "12/11/2015 01:41:00 PM", "05/20/2015 01:09:00 PM",
"09/18/2015 12:00:00 PM", "07/08/2015 11:05:00 PM", "02/22/2015 01:38:00 AM",
"07/22/2015 01:12:00 PM", "09/07/2015 10:43:00 AM", "08/11/2015 04:00:00 PM",
"10/13/2015 06:33:00 AM", "10/10/2015 05:32:00 PM", "11/15/2015 07:09:00 PM",
"11/19/2015 03:05:00 PM", "04/08/2015 04:33:00 PM", "05/11/2015 12:01:00 AM",
"04/21/2015 06:15:00 PM", "06/13/2015 10:29:00 AM", "06/22/2015 06:41:00 PM",
"09/03/2015 08:00:00 AM", "04/08/2015 06:00:00 PM", "07/17/2015 08:00:00 PM",
"08/29/2015 09:00:00 AM", "04/28/2015 01:46:00 PM", "09/07/2015 07:00:00 PM",
"12/30/2015 06:30:00 AM", "08/29/2015 11:37:00 PM", "08/24/2015 10:00:00 PM",
"06/17/2015 07:02:00 AM", "02/14/2015 10:21:00 PM", "03/29/2015 07:00:00 PM",
"10/01/2015 07:15:00 AM", "06/14/2015 03:00:00 PM", "12/16/2014 09:00:00 AM",
"02/14/2015 07:54:00 PM", "10/02/2015 08:17:00 AM", "05/14/2015 08:30:00 AM",
"07/07/2015 10:15:00 AM", "04/07/2015 01:48:00 AM", "11/02/2015 11:00:00 PM",
"04/16/2015 03:00:00 PM", "08/22/2015 08:09:00 AM", "10/24/2015 05:00:00 PM"
)), .Names = c("summarized.offense.description", "occurred.date.or.date.range.start"
), row.names = c(NA, -100L), class = c("tbl_df", "tbl", "data.frame"
))
Iは、列を既存から時間データを抽出するために、次のコードを使用:
#Splitting time from column occured.date
SPD_2015 <- mutate(SPD_2015, occurred.time = str_sub(SPD_2015$occurred.date.or.date.range.start, -11, -1))
#Converting character to time for occured.time
SPD_2015$occurred.time <- strptime(SPD_2015$occurred.time, "%I:%M:%S %p") %>%
str_sub(-8, -1) %>%
hms()
#creating the occurred.time.hour value so I can isolate the hour value
SPD_2015 <- mutate(SPD_2015, occurred.time.hour = hour(occurred.time))
今私はggplot2を使用してグラフ化することができる犯罪が発生した単離された時間値を含む列を有します。しかし、私はdplyrを使用して私のデータのサブセット場合:
#filtering data for only car prowl
car.prowl <- filter(SPD_2015, summarized.offense.description == "CAR PROWL")
列の時の値「occurred.time」と「occurred.time.hour」私の新しく作成されたデータフレーム(car.prowl)内で一致しなくなります。 "occur.time.hour"列はソースと正しく一致しますが、今回はoccur.time列が変更されました。
これを追加するだけです。私はもともとggplot
ggplot(car.prowl, aes(hour(occurred.time))) +
geom_bar()
を使用して犯罪の発生した時間をプロットしようとしたとき、私はエラーを取得しますので、車のための独立したデータフレームをうろつく作成:「エラー:美学が長さ1またはデータと同じでなければなりません(14):x "である。それは意味があり、私は理解する。
> dim(car.prowl)
[1] 14 4
しかしcar.prowl 14の長さを有し、私は次のコードを入力したとき:
> length(hour(car.prowl$occurred.time))
[1] 100
を、元のデータセットの長さを示し、代わりに14
のサブセット長の誰かが解決策または回避策を提案できますか? ありがとうございます
ありがとうございました!日時を抽出するあなたのアプローチは、はるかに効率的で、私は元の問題をプロットすることができました。 私のアプローチで何がうまくいかなかったかについてはまだ少し混乱していますが、Rの本質であると思います。 – RunAmuck