一つのシンプルで簡単な方法は、制約が大きめ数Mで重み付けされている制約最小二乗を利用することである、のような:TLY点を
from numpy import dot
from numpy.linalg import solve
from numpy.polynomial.polynomial import Polynomial as P, polyvander as V
def clsq(A, b, C, d, M= 1e5):
"""A simple constrained least squared solution of Ax= b, s.t. Cx= d,
based on the idea of weighting constraints with a largish number M."""
return solve(dot(A.T, A)+ M* dot(C.T, C), dot(A.T, b)+ M* dot(C.T, d))
def cpf(x, y, x_c, y_c, n, M= 1e5):
"""Constrained polynomial fit based on clsq solution."""
return P(clsq(V(x, n), y, V(x_c, n), y_c, M))
明らかにこれは本当にすべてではありません包括銀の弾丸ソリューションが、どうやら簡単な例で、合理的なうまく動作しているようだ(for M in [0, 4, 24, 124, 624, 3124]
):
In []: x= linspace(-6, 6, 23)
In []: y= sin(x)+ 4e-1* rand(len(x))- 2e-1
In []: x_f, y_f= linspace(-(3./ 2)* pi, (3./ 2)* pi, 4), array([1, -1, 1, -1])
In []: n, x_s= 5, linspace(-6, 6, 123)
In []: plot(x, y, 'bo', x_f, y_f, 'bs', x_s, sin(x_s), 'b--')
Out[]: <snip>
In []: for M in 5** (arange(6))- 1:
....: plot(x_s, cpf(x, y, x_f, y_f, n, M)(x_s))
....:
Out[]: <snip>
In []: ylim([-1.5, 1.5])
Out[]: <snip>
In []: show()
と生産の出力のような:
編集:を追加しました '正確な' ソリューション:
from numpy import dot
from numpy.linalg import solve
from numpy.polynomial.polynomial import Polynomial as P, polyvander as V
from scipy.linalg import qr
def solve_ns(A, b): return solve(dot(A.T, A), dot(A.T, b))
def clsq(A, b, C, d):
"""An 'exact' constrained least squared solution of Ax= b, s.t. Cx= d"""
p= C.shape[0]
Q, R= qr(C.T)
xr, AQ= solve(R[:p].T, d), dot(A, Q)
xaq= solve_ns(AQ[:, p:], b- dot(AQ[:, :p], xr))
return dot(Q[:, :p], xr)+ dot(Q[:, p:], xaq)
def cpf(x, y, x_c, y_c, n):
"""Constrained polynomial fit based on clsq solution."""
return P(clsq(V(x, n), y, V(x_c, n), y_c))
とフィット感をテスト:
In []: x= linspace(-6, 6, 23)
In []: y= sin(x)+ 4e-1* rand(len(x))- 2e-1
In []: x_f, y_f= linspace(-(3./ 2)* pi, (3./ 2)* pi, 4), array([1, -1, 1, -1])
In []: n, x_s= 5, linspace(-6, 6, 123)
In []: p= cpf(x, y, x_f, y_f, n)
In []: p(x_f)
Out[]: array([ 1., -1., 1., -1.])
わからない補間がここに役立つことを - もし私の多項式モデルは右の点を通らず、補間はできません。 – JPH
固定小数点は、xとyの両方が固定されていることを意味します。これらのポイントを修正しながら補間するには、http://en.wikipedia.org/wiki/Lagrange_polynomialを使用できます。 – dranxo
ありがとう...面白そうです。その瞬間、私は固定小数点をデータに追加して残りの部分を負荷するような作業をしました。... – JPH