私は、線形回帰を構築するTensorflow例で遊んでいた、と私のコードは以下の通りです:Tensorflow「feed_dict」:キーと値のペアのために同じシンボルを使用するには、「TypeError例外を:テンソルとしてfeed_dictキーを解釈することはできません」だ
import numpy as np
import tensorflow as tf
train_X = np.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])
train_Y = np.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])
n_samples = train_X.shape[0]
batch_size = 100
total_epochs = 50
X = tf.placeholder('float')
y = tf.placeholder('float')
W = tf.Variable(np.random.randn(), name="weights")
b = tf.Variable(np.random.randn(), name="bias")
y_pred = tf.add(tf.mul(X, W), b)
cost = tf.reduce_sum(tf.pow(y_pred-y, 2))/(2*n_samples) #L2 loss
optimizer = tf.train.AdamOptimizer().minimize(cost) #Gradient
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
print("Initia values for W and b: ", W.eval(), b.eval())
for _ in range(total_epochs):
sess.run(optimizer, feed_dict={X: x, y: y})
print("Value for W and b after GD: ", W.eval(), b.eval())
私はバグがここにあった実現深く掘った後
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-11-185d8e05cbcd> in <module>()
28 for _ in range(total_epochs):
29 for (x, y) in zip(train_X, train_Y):
---> 30 sess.run(optimizer, feed_dict={X: x, y: y})
31 print("Value for W and b after GD: ", W.eval(), b.eval())
/home/ubuntu/anaconda2/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in run(self, fetches, feed_dict, options, run_metadata)
338 try:
339 result = self._run(None, fetches, feed_dict, options_ptr,
--> 340 run_metadata_ptr)
341 if run_metadata:
342 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
/home/ubuntu/anaconda2/lib/python2.7/site-packages/tensorflow/python/client/session.pyc in _run(self, handle, fetches, feed_dict, options, run_metadata)
540 except Exception as e:
541 raise TypeError('Cannot interpret feed_dict key as Tensor: '
--> 542 + e.args[0])
543
544 if isinstance(subfeed_val, ops.Tensor):
TypeError: Cannot interpret feed_dict key as Tensor: Can not convert a float64 into a Tensor.
:
feed_dict={X: x, y: y}
しかし、上記実行すると、私は、このエラーを与えます
ここで、使用しているキーと値のペアは同じです( 'y'と 'y')。 Y:yに変更してそれに応じて残りの部分を変更した場合:
Y = tf.placeholder('float')
cost = tf.reduce_sum(tf.pow(y_pred-Y, 2))/(2*n_samples) #L2 loss
sess.run(optimizer, feed_dict={X: x, Y: y})
コードは完全に実行されます。私はfeed_dictにキーと値のペアのために同じシンボルを使用することができなかった理由を
は非常に疑問に思って?左上の「y」(キー)は上記のコスト関数の「y」を参照するべきではありませんか?